MobilityDB Workshop
Table of Contents
	1. Managing Ship Trajectories (AIS)
		Contents
	Data
	Tools
	Preparing the Database
	Loading the Data
	Constructing Trajectories
	Basic Data Exploration
	Analyzing the Trajectories

	2. Dashboard and Visualization of Ship Trajectories (AIS)
		Contents
	Tools
	Setting up the Data Source
	Setting up the Visualization Dashboard
	Sign in and Connect to Data Source
	Creating a Dashboard
		Speed of Individual Ships
	Routes Used Most Frequently Visualized with a Static Heat Map
	Number of Boats Moving Through a Given Area
	Boats in Proximity in a Given Time Range

	Dynamic Dashboards - Creating Variables
		Dynamic Query: Number of Boats Moving Through a Given Area in a Certain Time Period
	Global Variables

	Final Dashboard

	3. Managing Flight Data and Creating Dashboard with Grafana
		Contents
	Tools
	Part 1 - Data and Environment Preparation
		Preparing the Database
	Data Cleaning
	Setting up the Dashboard and Connecting to Data
			Source
		

	Part 2 - Working with Discrete Points
		Visualizing 24-hour Flight Pattern of Single Airplane
	Time-series Graphs for a Single Airplane

	Part 3 - Working with Continuous Trajectories in MobilityDB
		Creating MobilityDB Trajectories
	Aggregating Flight Statistics
	Flights Taking-off in Some Interval of Time (User-Defined)

	Complete Flight Data Business Intelligence Dashboard

	4. Managing GTFS Data
		Loading GTFS Data in PostgreSQL
	Transforming GTFS Data for MobilityDB

	5. Managing Google Location History
		Loading Google Location History Data

	6. Managing GPX Data
		Loading GPX Data

MobilityDB Workshop

Mahmoud SAKR
Université libre de Bruxelles, Belgium

Esteban ZIMÁNYI
Université libre de Bruxelles, Belgium

Mohammad Ismail Tirmizi
Université libre de Bruxelles, Belgium

Adam Broniewski
Université libre de Bruxelles, Belgium

Jose Antonio Lorencio Abril
Update contents to MobilityDB 1.1.
			 Université libre de Bruxelles, Belgium

Abstract

				Every module in this workshop illustrates a usage scenario of MobilityDB. The data sets and the tools are described inside each of the modules. Eventually, additional modules will be added to discover more MobilityDB features.
			

				While this workshop illustrates the usage of MobilityDB functions, it does not explain them in detail. If you need help concerning the functions of MobilityDB, please refer to the documentation.
			

				If you have questions, ideas, comments, etc., please contact me on mahmoud.sakr@ulb.ac.be.
			

				[image: MobilityDB Workshop]
			

Chapter 1. Managing Ship Trajectories (AIS)

 AIS stands for Automatic Identification System. It is the location tracking system for sea vessels. This module illustrates how to load big AIS data sets into MobilityDB and do basic exploration.
		

		The idea of this module is inspired from the tutorial of MovingPandas on ship data analysis by Anita Graser.
		
Contents

This module covers the following topics:
				
	Loading large trajectory datasets into MobilityDB

	Create proper indexes to speed up trajectory construction

	Select trajectories by a spatial window

	Join trajectories tables by proximity

	Select certain parts inside individual trajectories

	Manage the temporal speed and azimuth features of ships

			

Data

				The Danish Maritime Authority publishes about 3 TB of AIS routes in CSV format here. The columns in the CSV are listed in Table 1.1, “AIS columns”. This module uses the data of one day June 1st 2023. The CSV file size is 582 MB, and it contains more than 11 M rows.
			
Table 1.1. AIS columns
	Timestamp	Timestamp from the AIS base station, format: 31/12/2015 23:59:59
	Type of mobile	Describes what type of target this message is received from (class A AIS Vessel, Class B AIS vessel, etc)
	MMSI	MMSI number of vessel
	Latitude	Latitude of message report (e.g. 57,8794)
	Longitude	Longitude of message report (e.g. 17,9125)
	Navigational status	Navigational status from AIS message if available, e.g.: 'Engaged in fishing', 'Under way using engine', mv.
	ROT	Rot of turn from AIS message if available
	SOG	Speed over ground from AIS message if available
	COG	Course over ground from AIS message if available
	Heading	Heading from AIS message if available
	IMO	IMO number of the vessel
	Callsign	Callsign of the vessel
	Name	Name of the vessel
	Ship type	Describes the AIS ship type of this vessel
	Cargo type	Type of cargo from the AIS message
	Width	Width of the vessel
	Length	Lenght of the vessel
	Type of position fixing device	Type of positional fixing device from the AIS message
	Draught	Draugth field from AIS message
	Destination	Destination from AIS message
	ETA	Estimated Time of Arrival, if available
	Data source type	Data source type, e.g. AIS
	Size A	Length from GPS to the bow
	Size B	Length from GPS to the stern
	Size C	Length from GPS to starboard side
	Size D	Length from GPS to port side

Tools

				The tools used in this module are as follows:
				
	MobilityDB, on top of PostgreSQL and PostGIS. Although you can use a docker image, we recommend to install MobilityDB on your system, either from binaries or from sources.

	QGIS

			

Preparing the Database

				Create a new database DanishAIS, then use your SQL editor to create the MobilityDB extension as follows:
				

CREATE EXTENSION MobilityDB CASCADE;

				The CASCADE command will additionally create the PostGIS extension.
			

				Now create a table in which the CSV file will be loaded:
				

CREATE TABLE AISInput(
 T timestamp,
 TypeOfMobile varchar(100),
 MMSI integer,
 Latitude float,
 Longitude float,
 navigationalStatus varchar(100),
 ROT float,
 SOG float,
 COG float,
 Heading integer,
 IMO varchar(100),
 Callsign varchar(100),
 Name varchar(100),
 ShipType varchar(100),
 CargoType varchar(100),
 Width float,
 Length float,
 TypeOfPositionFixingDevice varchar(100),
 Draught float,
 Destination varchar(100),
 ETA varchar(100),
 DataSourceType varchar(100),
 SizeA float,
 SizeB float,
 SizeC float,
 SizeD float,
 Geom geometry(Point, 4326)
);

			

Loading the Data

				For importing CSV data into a PostgreSQL database one can use the COPY command as follows:
				

COPY AISInput(T, TypeOfMobile, MMSI, Latitude, Longitude, NavigationalStatus,
 ROT, SOG, COG, Heading, IMO, CallSign, Name, ShipType, CargoType, Width, Length,
 TypeOfPositionFixingDevice, Draught, Destination, ETA, DataSourceType,
 SizeA, SizeB, SizeC, SizeD)
FROM '/home/mobilitydb/DanishAIS/aisdk-2023-06-01.csv' DELIMITER ',' CSV HEADER;

			

				It is possible that the above command fails with a permission error. The reason for this is that COPY is a server capability, while the CSV file is on the client side. To overcome this issue, one can use the \copy command of psql as follows:
				

psql -d DanishAIS -c "\copy AISInput(T, TypeOfMobile, MMSI, Latitude, Longitude, NavigationalStatus, ROT, SOG, COG, Heading, IMO, CallSign, Name, ShipType, CargoType, Width, Length, TypeOfPositionFixingDevice, Draught, Destination, ETA, DataSourceType, SizeA, SizeB, SizeC, SizeD) FROM '/home/mobilitydb/DanishAIS/aisdk-2023-06-01.csv' DELIMITER ',' CSV HEADER;"

				In addition, if you downloaded the CSV file from this repo's data , then you will need to add the column 'geom' to the command.
			

				This import took about 1 minute and 30 seconds on my machine, which is a development laptop. The CSV file has 11,809,593 rows, all of which were correctly imported. For bigger datasets, one could alternative could use the program pgloader.
			

				We clean up some of the fields in the table and create spatial points with the following command.
				

UPDATE AISInput SET
 NavigationalStatus = CASE NavigationalStatus WHEN 'Unknown value' THEN NULL END,
 IMO = CASE IMO WHEN 'Unknown' THEN NULL END,
 ShipType = CASE ShipType WHEN 'Undefined' THEN NULL END,
 TypeOfPositionFixingDevice = CASE TypeOfPositionFixingDevice
 WHEN 'Undefined' THEN NULL END,
 Geom = ST_SetSRID(ST_MakePoint(Longitude, Latitude), 4326);

			

				The above query took around 1.5 min on my desktop. Let's visualize the spatial points on QGIS.
			
Figure 1.1. Visualizing the input points
[image: Visualizing the input points]

				Clearly, there are noise points that are far away from Denmark or even outside earth. This module will not discuss a thorough data cleaning. However, we do some basic cleaning in order to be able to construct trajectories:
				
	Filter out points that are outside the window defined by bounds point(-16.1,40.18) and point(32.88, 84.17). This window is obtained from the specifications of the projection in https://epsg.io/25832.

	Filter out the rows that have the same identifier (MMSI, T)

			

				

CREATE TABLE AISInputFiltered AS
SELECT DISTINCT ON(MMSI, T) *
FROM AISInput
WHERE Longitude BETWEEN -16.1 AND 32.88 AND Latitude BETWEEN 40.18 AND 84.17;
-- Query returned successfully: 11545496 rows affected, 00:45 minutes execution time.
SELECT COUNT(*) FROM AISInputFiltered;
--11545496

			

Constructing Trajectories

				Now we are ready to construct ship trajectories out of their individual observations:
			

				

CREATE TABLE Ships(MMSI, Trip, SOG, COG) AS
SELECT MMSI,
 tgeompointSeq(array_agg(tgeompoint(ST_Transform(Geom, 25832), T) ORDER BY T)),
 tfloatSeq(array_agg(tfloat(SOG, T) ORDER BY T) FILTER (WHERE SOG IS NOT NULL)),
 tfloatSeq(array_agg(tfloat(COG, T) ORDER BY T) FILTER (WHERE COG IS NOT NULL))
FROM AISInputFiltered
GROUP BY MMSI;
-- Query returned successfully: 6264 rows affected, 00:52 minutes execution time.

			

				This query constructs, per ship, its spatiotemporal trajectory Trip, and two temporal attributes SOG and COG. Trip is a temporal geometry point, and both SOG and COG are temporal floats. MobilityDB builds on the coordinate transformation feature of PostGIS. Here the SRID 25832 (European Terrestrial Reference System 1989) is used, because it is the one advised by Danish Maritime Authority in the download page of this dataset. Figure 1.2, “Visualizing the ship trajectories” shows the constructed trajectories in QGIS.
			

				

ALTER TABLE Ships ADD COLUMN Traj geometry;
UPDATE Ships SET Traj = trajectory(Trip);
-- Query returned successfully: 6264 rows affected, 3.8 secs execution time.

			

				Figure 1.2, “Visualizing the ship trajectories” shows the constructed trajectories in QGIS. Notice that there are still significant errors in the data, in particular the vertical lines. These errors need to be corrected so that the analytical queries in the following sections return more accurate results. We do not cope with this issue here, since the topic of trajectory cleaning is beyond the scope of this introductory workshop.
			

				
Figure 1.2. Visualizing the ship trajectories
[image: Visualizing the ship trajectories]

			

Basic Data Exploration

				The total distance traveled by all ships:
			

				

SELECT SUM(length(Trip)) FROM Ships;
-- 807319558.5805709

			

				This query uses the length function to compute per trip the sailing distance in meters. We then aggregate over all trips and calculate the sum. Let's have a more detailed look, and generate a histogram of trip lengths:
			

				

WITH buckets (bucketNo, RangeKM) AS (
 SELECT 1, floatspan '[0, 0]' UNION
 SELECT 2, floatspan '(0, 50)' UNION
 SELECT 3, floatspan '[50, 100)' UNION
 SELECT 4, floatspan '[100, 200)' UNION
 SELECT 5, floatspan '[200, 500)' UNION
 SELECT 6, floatspan '[500, 1500)' UNION
 SELECT 7, floatspan '[1500, 10000)'),
histogram AS (
 SELECT bucketNo, RangeKM, count(MMSI) as freq
 FROM buckets left outer join Ships on (length(Trip)/1000) <@ RangeKM
 GROUP BY bucketNo, RangeKM
 ORDER BY bucketNo, RangeKM
)
SELECT bucketNo, RangeKM, freq,
 repeat('▪', (freq::float / max(freq) OVER () * 30)::int) AS bar
FROM histogram;
-- Total query runtime: 2.8 secs

 bucketno | rangekm | freq | bar
----------+---------------+------+--------------------------------
 1 | [0, 0] | 796 | ▪▪▪▪▪▪
 2 | (0, 50) | 3752 | ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
 3 | [50, 100) | 571 | ▪▪▪▪▪
 4 | [100, 200) | 452 | ▪▪▪▪
 5 | [200, 500) | 569 | ▪▪▪▪▪
 6 | [500, 1500) | 100 | ▪
 7 | [1500, 10000) | 22 |
(7 rows)

			

				Surprisingly there are trips with zero length. These are clearly noise that can be deleted. Also there are very many short trips, that are less than 50 km long. On the other hand, there are few long trips that are more than 1,500 km long. They look like noise. Normally one should validate more, but to simplify this module, we consider them as noise, and delete them.
				

DELETE FROM Ships
WHERE length(Trip) = 0 OR length(Trip) >= 1500000;
-- DELETE 820

				Now the Ships table looks like Figure 1.3, “Ship trajectories after filtering”.
			
Figure 1.3. Ship trajectories after filtering
[image: Ship trajectories after filtering]

				Let's have a look at the speed of the ships. There are two speed values in the data; the speed calculated from the spatiotemporal trajectory speed(Trip), and the SOG attribute. Optimally, the two will be the same. A small variance would still be OK, because of sensor errors. Note that both are temporal floats. In the next query, we compare the averages of the two speed values for every ship:
				

SELECT ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6) SpeedDifference
FROM Ships WHERE SOG IS NOT NULL AND
 ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6) > 10.0
ORDER BY SpeedDifference DESC;

 speeddifference

 241.42049907716665
 134.61257387558112
 112.36643046964278
 110.10490793777619
 81.66118732332465
 81.5725669336415
 69.85832834619002
 57.232404771295045
 52.943341619001586
 52.921746684116904
...

			

				The twavg computes a time-weighted average of a temporal float. It basically computes the area under the curve, then divides it by the time duration of the temporal float. By doing so, the speed values that remain for longer durations affect the average more than those that remain for shorter durations. Note that SOG is in knot, and Speed(Trip) is in m/s. The query converts both to km/h.
			

				The query shows the first 10 ship trajectories of the 82 in the table that have a difference of more than 10 km/h. These trajectories are shown in Figure 1.4, “Ship trajectories with big difference between speed(Trip) and SOG”. Again they look like noise, so we remove them with the following query
				

DELETE FROM Ships
WHERE ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6) > 10;

			
Figure 1.4. Ship trajectories with big difference between speed(Trip) and SOG
[image: Ship trajectories with big difference between speed(Trip) and SOG]

				Now we do a similar comparison between the calculated azimuth from the spatiotemporal trajectory, and the attribute COG:
				

SELECT ABS(twavg(COG) - twavg(azimuth(Trip)) * 180.0/pi()) AzimuthDifference
FROM Ships
WHERE ABS(twavg(COG) - twavg(azimuth(Trip)) * 180.0/pi()) > 45.0
ORDER BY AzimuthDifference DESC;

 azimuthdifference

 355.4200584570843
 348.213417943632
 333.7458943572906
 321.5644829906112
 309.6935360677792
 308.4444213637132
 295.5019204058323
 294.7215887580075
 267.8656764337898
 267.09343294055583
...

			

				Here we see that the COG is not as accurate as was the case for the SOG attribute. More than 1600 trajectories have an azimuth difference bigger than 45 degrees. Figure 1.5, “Ship trajectories with big difference between azimuth(Trip) and COG” visualizes them. Some of them look like noise, but some look fine. For simplicity, we keep them all.
			
Figure 1.5. Ship trajectories with big difference between azimuth(Trip) and COG
[image: Ship trajectories with big difference between azimuth(Trip) and COG]

Analyzing the Trajectories

				Now we dive into MobilityDB and explore more of its functions. In Figure 1.6, “A sample ship trajectory between Rødby and Puttgarden”, we notice trajectories that keep going between Rødby and Puttgarden. Most probably, these are the ferries between the two ports. The task is simply to spot which ships do so, and to count how many one way trips they did in this day. This is expressed in the following query:
			

				

CREATE INDEX Ships_Trip_Idx ON Ships USING GiST(Trip);

WITH Ports(Rodby, Puttgarden) AS (
 SELECT ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832),
 ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832))
SELECT S.*, Rodby, Puttgarden
FROM Ports P, Ships S
WHERE eintersects(S.Trip, P.Rodby) AND eintersects(S.Trip, P.Puttgarden);
-- Total query runtime: 462 msec
-- 4 rows retrieved.

			
Figure 1.6. A sample ship trajectory between Rødby and Puttgarden
[image: A sample ship trajectory between Rødby and Puttgarden]

Figure 1.7. All ferries between Rødby and Puttgarden
[image: All ferries between Rødby and Puttgarden]

				This query creates two envelope geometries that represent the locations of the two ports, then intersects them with the spatiotemporal trajectories of the ships. The eintersects function checks whether a temporal point ever intersects a geometry. To speed up the query, a spatiotemporal GiST index is first built on the Trip attribute. The query identified four Ships that commuted between the two ports, Figure 1.7, “All ferries between Rødby and Puttgarden”. To count how many one way trips each of them did, we extend the previous query as follows:
				

WITH Ports(Rodby, Puttgarden) AS (
 SELECT ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832),
 ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832))
SELECT MMSI, (numSequences(atGeometry(S.Trip, P.Rodby)) +
 numSequences(atGeometry(S.Trip, P.Puttgarden)))/2.0 AS NumTrips
FROM Ports P, Ships S
WHERE eintersects(S.Trip, P.Rodby) AND eintersects(S.Trip, P.Puttgarden);

 mmsi | numtrips
-----------+---------------------
 211188000 | 22.0000000000000000
 211190000 | 22.0000000000000000
 219000429 | 24.0000000000000000
 219000431 | 24.0000000000000000
(4 rows)

			

				The function atGeometry restricts the temporal point to the parts where it is inside the given geometry. The result is thus a temporal point that consists of multiple pieces (sequences), with temporal gaps in between. The function numSequences counts the number of these pieces.
			

				With this high number of ferry trips, one wonders whether there are collision risks with ships that traverse this belt (the green trips in Figure 1.6, “A sample ship trajectory between Rødby and Puttgarden”). To check this, we query whether a pair of ship come very close to one another as follows:
			

				

WITH B(Belt) AS (
 SELECT ST_MakeEnvelope(640730, 6058230, 654100, 6042487, 25832)),
BeltShips AS (
 SELECT MMSI, atGeometry(S.Trip, B.Belt) AS Trip,
 trajectory(atGeometry(S.Trip, B.Belt)) AS Traj
 FROM Ships S, B
 WHERE eintersects(S.Trip, B.Belt))
SELECT S1.MMSI, S2.MMSI, S1.Traj, S2.Traj, shortestLine(S1.trip, S2.trip) Approach
FROM BeltShips S1, BeltShips S2
WHERE S1.MMSI > S2.MMSI AND edwithin(S1.trip, S2.trip, 300);
-- Total query runtime: 28.5 secs
-- 7 rows retrieved.

			

				The query first defines the area of interest as an envelope, the red dashed line in Figure 1.8, “Ship that come closer than 300 meters to one another”). It then restricts/crops the trajectories to only this envelope using the atGeometry function. The main query then find pairs of different trajectories that ever came within a distance of 300 meters to one another (the dwithin). For these trajectories, it computes the spatial line that connects the two instants where the two trajectories were closest to one another (the shortestLine function). Figure 1.8, “Ship that come closer than 300 meters to one another” shows the green trajectories that came close to the blue trajectories, and their shortest connecting line in solid red. Most of the approaches occur at the entrance of the Rødby port, which looks normal. But we also see two interesting approaches, that may indicate danger of collision away from the port. They are shown with more zoom in Figure 1.9, “A zoom-in on a dangerous approach” and Figure 1.10, “Another dangerous approach”
			
Figure 1.8. Ship that come closer than 300 meters to one another
[image: Ship that come closer than 300 meters to one another]

Figure 1.9. A zoom-in on a dangerous approach
[image: A zoom-in on a dangerous approach]

Figure 1.10. Another dangerous approach
[image: Another dangerous approach]

Chapter 2. Dashboard and Visualization of Ship Trajectories (AIS)

		This module builds on the Managing Ship Trajectories (AIS) module by creating a business intelligence dashboard to visualize and manipulate data. The module shows how to set up a Grafana dashboard with an existing database, create basic visualizations, set properties for different outputs, and use Variables to create dynamic visuals.
	
Contents

			The module covers the following topics:
		
	
					Setting up a Grafana dashboard and connecting to a database
				

	
					Visualize a statistic from simple aggregations
				

	
					Visualize spatial frequency with a heat-map (not aggregated)
				

	
					Visualize frequency in spatial extent with a heat-map (pre-aggregated)
				

	
					Visualize spatio-temporal proximate objects
				

	
					Create dynamic queries with variables
				

Tools

			The tools used in this module are as follows:
		
	
					MobilityDB, on top of PostgreSQL and PostGIS
				

	
					Grafana (version 9.0.7)
				

Setting up the Data Source

			Data for the workshop is loaded into a MobilityDB database hosted on Azure, with all login information provided in the [Sign-in and Connect to Data Source] section below.
		

			Alternatively, you can set up your own MobilityDB database as described in the previous module. The raw data in CSV format is also available on the MobilityDB-workshop repository.
		

Setting up the Visualization Dashboard

			We can use	Grafana, an open-source technology, to create a business intelligence dashboard. This will allow different users to set up their own queries and visualizations, or easily slice through data in a visual way for non-technical users.
		

			Start by setting up Grafana on your system:
		
	
					 macOS
				

brew update
brew install grafana
brew services start grafana

	
					 Debian or Ubuntu
				

Note These are instructions for Grafana Enterprise Edition (via APT repository),
which they recommend. It includes all the Open Source features and can also use
Enterprise features if you have a License.

Setup Grafana Keys
sudo apt-get install -y apt-transport-https
sudo apt-get install -y software-properties-common wget
wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key add -

Add repository for stable releases
echo "deb https://packages.grafana.com/enterprise/deb stable main"
	| sudo tee -a /etc/apt/sources.list.d/grafana.list

Install Grafana
sudo apt-get update
sudo apt-get install grafana-enterprise

	
					 Windows
				

					Use the Windows installer available at the Grafana website.
				

Sign in and Connect to Data Source

			We can now sign in to Grafana by going to http://localhost:3000/. Set up a new account if needed. Additional instructions to login can be found here following the build your first dashboard instructions.
		

			Next, we add a data source for Grafana to interact with. In this case, we can follow the Grafana instructions for adding a data source and search for PostgreSQL as the data source.
		

			The workshop is using the following settings to connect to the postgres server on Azure.
		
	
					Name: DanishAIS
				

	
					Host: 20.79.254.53:5432
				

	
					Database: danishais
				

	
					User: mobilitydb-guest
				

	
					Password: mobilitydb@guest
				

	
					TLS/SSL Mode: disable
				

	
					Version: 12+
				

			Then press save and test.
		
Figure 2.1. Data Source settings
[image: Data Source settings]

Creating a Dashboard

			With the dashboard configured, and a datasource added, we can now build different panels to visualize data in intuitive ways.
		
Speed of Individual Ships

				Let's visualize the speed of the ships using the previously built query. Here we will represent it as a statistic with a color gradient.
			
	
						Add a new panel
					

	
						Select DanishAIS as the data source
					

	
						In Format as, change Time series to Table and choose Edit SQL
					

	
						Here you can add your SQL queries. Let's replace the existing query with the following SQL script:
					

SELECT MMSI, ABS(twavg(SOG) * 1.852 - twAvg(speed(Trip))* 3.6) AS SpeedDifference
FROM Ships
ORDER BY SpeedDifference DESC
LIMIT 5;

	
						We can also quickly do some datatype transformations to help Grafana correctly interpret the incoming data. Next to the Query button, select Transform, add Convert field type and choose mmsi as String.
					
Figure 2.2. Datatype transformations in Grafana
[image: Datatype transformations in Grafana]

	
						We will modify some visualization options in the panel on the right.
					

						First, choose stat as the visualization
					
Figure 2.3. Choosing visualization type
[image: Choosing visualization type]

						Panel Options: Give the panel the title Incorrect AIS Boat Speed Reporting
					

						Value Options:
					
	
								Show: All values
							

	
								Fields: speeddifference
							
Figure 2.4. Value options dialogue box
[image: Value options dialogue box]

						Note: we can include a limit here instead of in our SQL query as well.
					

						Stat Styles:
					
	
								Orientation: Horizontal
							
Figure 2.5. Stat styles dialogue box
[image: Stat styles dialogue box]

						Standard Options:
					
	
								Unit: Velocity → meter/second (m/s). Note: you can scroll in the drop-down menu to see all options.
							

	
								Color scheme: Green-Yellow-Red (by value)
							

Figure 2.6. Standard options dialogue box
[image: Standard options dialogue box]

						Thresholds:
					
	
								remove the existing threshold by clicking the little trash can icon on the right. Adding a threshold will force the visualization to color the data a specific color if the threshold is met.
							

Figure 2.7. Thresholds dialogue box
[image: Thresholds dialogue box]

				The final visualization will look like the screenshot below.
			
Figure 2.8. Individual ship speed statistics visualization
[image: Individual ship speed statistics visualization]

Routes Used Most Frequently Visualized with a Static Heat Map

				We can visualize the routes used by ships with a heat map generated from individual GPS points of the ships. This approach is quite costly, so we will use TABLESAMPLE SYSTEM to specify an approximate percentage of the data to use. If the frequency of locations returned varies in different areas, a heatmap using individual datapoints could be misleading without further data pre-processing. An alternative approach could be to use the
				PostGIS function ST_AsGeoJSON to generate shapes in geoJSON format which can be used in Grafana's World Map Panel plugin.
			
	
						Add a panel, select DanishAIS as the data source and Format As Table.
					

	
						Using Edit SQL, add the following SQL code:
					

-- NOTE: TABLESAMPLE SYSTEM(40) returns ~40% of the data.
SELECT latitude, longitude, mmsi
FROM aisinputfiltered TABLESAMPLE SYSTEM (40)

	
						Change the visualization type to Geomap.
					

	
						On the map, zoom in to fit the data points into the frame and modify the following visualization options:
					

						Panel Options:
					
	
								Title: Route Usage Frequency
							

						Map View:
					
	
								Use current map setting (this will use the current zoom and positioning level as default)
							

	
								Share View: enable (this will sync up the movement and zoom across multiple maps on the same dashboard)
							

Figure 2.9. Setting initial view in map view dialogue box
[image: Setting initial view in map view dialogue box]

						Data Layer:
					
	
								Layer type: Heatmap
							

	
								Location: Coords
							

	
								Latitude field: latitude
							

	
								Longitude field: longitude
							

	
								Weight values: 0.1
							

	
								Radius: 1
							

	
								Blur: 5
							

Figure 2.10. Setting up heat-map in data layer dialogue box
[image: Setting up heat-map in data layer dialogue box]

						Standard Options:
					
	
								Color scheme: Blue-Yellow-Red (by value).
							

Figure 2.11. Choosing color scheme in standard options dialogue	box
[image: Choosing color scheme in standard options dialogue box]

				The final visualization will look like the screenshot below.
			

				Note: The number of datapoints rendered can be manipulated by changing the parameter of the TABLESAMPLE SYSTEM() call in the query.
			
Figure 2.12. Route usage frequency heat-map visualization
[image: Route usage frequency heat-map visualization]

Number of Boats Moving Through a Given Area

	
						Create a new panel, and set DanishAIS as the Source, Format as: Table.
					

	
						Select visualization as: Geomap
					

	
						Add this SQL in the SQL editor section
					

-- Table with bounding boxes over regions of interest
WITH ports(port_name, port_geom, lat, lng) AS (
 SELECT p.port_name, p.port_geom, lat, lng
 FROM (VALUES
 -- ST_MakeEnvelope creates geometry against which to check intersection
 ('Rodby', ST_MakeEnvelope(
 651135, 6058230, 651422, 6058548, 25832)::geometry, 54.53, 11.06),
 ('Puttgarden', ST_MakeEnvelope(
 644339, 6042108, 644896, 6042487, 25832)::geometry,	54.64, 11.36))
 AS p(port_name, port_geom, lat, lng))
-- p.lat and p.lng will be used to place the port location on the visualization
SELECT P.port_name,
 sum(numSequences(atGeometry(S.Trip, P.port_geom))) AS trips_intersect_with_port,
 p.lat, p.lng
FROM ports AS P, Ships AS S
WHERE eIntersects(S.Trip, P.port_geom)
GROUP BY P.port_name, P.lat, P.lng

						Note: You will see queries are build using the WITH statement (common table expressions - CTE). This helps to break the query down into parts, and also helps make it easier to understand by others.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Data Layer
					
	
								Layer type: → markers
							

	
								Style Size: → Fixed and value: 20
							

	
								Color: → trips_intersect_with_port (This will color points on the map based on this value)
							

						Standard options
					
	
								Min → 88
							

	
								Max → 97
							

	
								Color scheme → Green-Yellow-Red (by value)
							

						Note: At the writing of this tutorial, the Geomap plugin is in beta and has some minor bugs with how colors are rendered based when the Min and Max values are auto calculated.
					

				In the visualization below we can see port Rodby has a higher number of ships coming and going to it and that's why it is colored red. This visualization can show relative activity of ships in regions and ports.
			
Figure 2.13. Frequency intersecting with geometric envelop
				visualization
[image: Frequency intersecting with geometric envelop visualization]

Boats in Proximity in a Given Time Range

				Follow the similar steps to add a Geomap panel as before, we include the following SQL script:
			

WITH TimeShips(MMSI, Trip) AS (
 SELECT MMSI,
 atTime(Trip, tstzspan '[2018-01-04 01:00:00, 2018-01-04 06:30:00)')
 FROM Ships),
TimeClosestShips(Boat1, Boat2, closestDistance, timeAtClosestDist, tripB1, tripB2) AS (
 SELECT S1.MMSI, S2.MMSI,
 startValue(atMin(S1.trip <-> S2.trip)),
 startTimestamp(atMin(S1.trip <-> S2.trip)),
 S1.trip AS tripB1, S2.trip
 FROM TimeShips S1, TimeShips S2
 WHERE S1.MMSI > S2.MMSI AND edwithin(S1.Trip, S2.Trip, 300))
SELECT t.boat1, t.boat_2, t.closet_distance, t.timeAtClosestDist,
 ST_X(ST_Transform(valueAtTimestamp(tripB1, timeAtClosestDist), 4326)) AS b1_lng,
 ST_Y(ST_Transform(valueAtTimestamp(tripB1, timeAtClosestDist), 4326)) AS b1_lat,
 ST_X(ST_Transform(valueAtTimestamp(tripB2, timeAtClosestDist), 4326)) AS b2_lng,
 ST_Y(ST_Transform(valueAtTimestamp(tripB2, timeAtClosestDist), 4326)) AS b2_lat
FROM TimeClosestShips t;

				We explain next the above query. The TimeShips CTE returns the data for a time period from 1 am to 6:30 am The TimeClosestShips CTE returns the time, location, and closest distance of the boats that are within 300 m of each other. Note the use of dWithin in the WHERE clause improves performance by limiting the computation to only those ships that were within 300 m. The final SELECT is used to project the timeAtClosestDistance onto the sequence of locations to return the lat and long of both ships.
			

				To add the points to the map modify the following options:
			

				Panel Options:
			
	
						Title: Ships within 300m
					

				Map View:
			
	
						Share view: enabled
					

				Data Layer:
			
	
						Layer 1: rename to Boat1
					

	
						Layer type: Heatmap
					

	
						Location: Coords
					

	
						Latitude field: b1_lat
					

	
						Longitude field: b1_lng
					

	
						Radius: 5
					

	
						Blur: 15
					

				Click on + Add layer to add another heat map layer to the data, this time using b2_lat and b2_long as the coordinates. We can also add a layer to show the precise locations with markers for both ships (using b1_lat, b1_lng, b2_lat and b2_long), setting each marker to a different color. For the Boat 1 and Boat 2 Locations, we use the following options:
			

				Data Layer:
			
	
						Value: 1
					

	
						Color: select different color for each boat.
					

Figure 2.14. Multiple layers in data layers dialogue box
[image: Multiple layers in data layers dialogue box]

				The final visualization looks like the below.
			
Figure 2.15. Visualization of ships within 300m using heat-map
[image: Visualization of ships within 300m using heat-map]

				It's helpful to include the tooltip for layers to allow users to see the data behind the visualization, which helps in interpretation and is a good way for subject-matter-experts to provide concrete feedback. Using the tooltip, we can quickly see that the same ship can be within 300m to multiple other ships in the same time frame (as seen in the screenshot below). This can result in a higher frequency of results in a heat map view than expected. SQL queries should be modified to ensure they are correctly interpreted.
			

				Not surprisingly, we see there are lots of results for proximity within ports. We could avoid including results in ports by excluding all results that occur within envelopes defined by ST_MakeEnvelope, as seen in the previous queries.
			
Figure 2.16. Multiple results for the same ship at various times while in a port
[image: Multiple results for the same ship at various times while in a port]

Dynamic Dashboards - Creating Variables

			We can use variables in Grafana to manipulate time-ranges that are used as inputs to MobilityDB queries. We'll create a drop-down type variable called FromTime that will be used as an input for the time period within which a query returns results.
		
	
					In the dashboard window, click Dashboard settings icon; the gear symbol, on the top-slightly-right of the window.
				
Figure 2.17. Dashboard settings gear box
[image: Dashboard settings gear box]

	
					Click on the Variables in the next window on the top-left side of the screen.
				
Figure 2.18. Selecting Variables in dashboard settings
[image: Selecting Variables in dashboard settings]

	
					You'll see a screen that explains the variables in Grafana and also points to the Templates and variables documentation. Click on the Add variable button.
				

	
					In General
				
	
							Name → FromTime
						

	
							Type → Custom
						

	
					In Custom options we will manually add all the time ranges with 1 hour increment. e.g. 2018-01-04 00:00:00, 2018-01-04 01:00:00 … 2018-01-04 23:00:00
				

	
					You get a screen like below. Towards the bottom there is also a Preview of values that shows what the drop-down options will look like for the variable you created. In this case, we are creating the timestamps in the same format that MobilityDB will accept.
				
Figure 2.19. Creating user-defined list of custom variables
[image: Creating user-defined list of custom variables]

	
					We can create another variable called ToTime with values shifted 1 hour. So the starting value would be 2018-01-04 01:00:00 and the final value will be 2018-01-05 00:00:00.
				

			Now we can modify some queries by including the newly created variables which will return results from a specific time window. We have now provided a user with the ability to dynamically modify visualization queries and slice through time.
		
Dynamic Query: Number of Boats Moving Through a Given Area in a Certain Time Period

				In the query code we just need to make slight changes for it to take time values from the variables. In the original query, shown below:
			

SELECT P.port_name,
 sum(numSequences(atGeometry(S.Trip, P.port_geom))) AS trips_intersect_with_port,
 p.lat, p.lng
FROM ports AS P, Ships AS S
WHERE eIntersects(S.Trip, P.port_geom)
GROUP BY P.port_name, P.lat, P.lng

				We just need to modify the trips_intersect_with_port parameter in the SELECT statement to look like:
			

sum(numSequences(atGeometry(atTime(S.Trip, tstzspan '[$FromTime, $ToTime)'), P.port_geom)))
 AS trips_intersect_with_port

				Essentially we just wrapped S.Trip with atTime() and passed our custom tstzspan range. The full query with this modification is below:
			

-- Table with bounding boxes over regions of interest
WITH ports(port_name, port_geom, lat, lng) AS (
 SELECT p.port_name, p.port_geom, lat, lng
 FROM (VALUES
 ('Rodby', ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832)::geometry,
 54.53, 11.06),
 ('Puttgarden', ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832)::geometry,
 54.64, 11.36)) AS p(port_name, port_geom, lat, lng))
SELECT P.port_name,
 sum(numSequences(atGeometry(atTime(S.Trip, tstzspan '[$FromTime, $ToTime)'),
 P.port_geom))) AS trips_intersect_with_port,
 p.lat, p.lng
FROM Ports AS P, Ships AS S
WHERE eIntersects(S.Trip, P.port_geom)
GROUP BY P.port_name, P.lat, P.lng

				We can select the start time, FromTime → 2018-01-04 02:00:00 and ToTime → 2018-01-04 06:00:00. As we can see below, the port Rodby has less activity during this period and that's why it is green now. But overall Rodby has more activity so when we look at the entire days data it is colored red.
			
Figure 2.20. Visualization of geometry intersection using dynamic variables
[image: Visualization of geometry intersection using dynamic variables]

Global Variables

				Grafana also has some built-in variables (global variables) that can be used to accomplish the same thing we did with custom variables. We can use the global variables ${__from:date} and ${__to:date} instead of the $FromTime and $ToTime we created. The time range can then be modified with the time range options in the top right of the dashboard.
			
Figure 2.21. Assigning time range using global variables
[image: Assigning time range using global variables]

				Note: It is important to be aware of the timezone used for the underlying data relative to the queries for global variables. Time zones can be adjusted at the bottom of the time range selection, Change time settings. For this example, we change the time zone to UTC to match our dataset.
			

Final Dashboard

			The final dashboard will look like this. Note there are a couple additional query views that were not covered explicitly in the workshop.
		
Figure 2.22. Full Dashboard
[image: Full Dashboard]

Chapter 3. Managing Flight Data and Creating Dashboard with Grafana

Contents

			The module covers the following topics in 3 parts:
		

			Part 1 - Data and Environment Preparation
		
	
					Preparing the Database
				

	
					Data Cleaning
				

	
					Setting up the Dashboard and Connecting to Data Source
				

			Part 2 - Working with Discrete Points
		
	
					Visualizing time-series data for a single airplane
				

	
					Visualizing discrete geographic points on a map
				

			Part 3 - Working with Continuous Trajectories in MobilityDB
		
	
					Creating trajectories for individual flights
				

	
					Visualizing statistics from temporal aggregations
				

	
					Visualizing statistics from multiple queries returning temporal aggregations
				

	
					Returning value changes from temporal data
				

	
					Visualizing spatial statistics from nested temporal conditions (intrinsic and dynamic)
				

Tools

			The tools used in this module are as follows:
		
	
					MobilityDB, on top of PostgreSQL and PostGIS
				

	
					Grafana (version 9.0.7)
				

Part 1 - Data and Environment Preparation

Preparing the Database

			The OpenSky data can be found in this Dataset
				link.
		

			Create a new database opensky, then use your SQL editor to create the MobilityDB extension as follows:
		

CREATE EXTENSION MobilityDB CASCADE;
		

			The CASCADE command will additionally create the PostGIS extension.
		

			Now create a table in which the CSV file will be loaded:
		

CREATE TABLE flights(
	et bigint,
	icao24 varchar(20),
	lat float,
	lon float,
	velocity float,
	heading float,
	vertrate float,
	callsign varchar(10),
	onground boolean,
	alert boolean,
	spi boolean,
	squawk integer,
	baroaltitude numeric(7,2),
	geoaltitude numeric(7,2),
	lastposupdate numeric(13,3),
	lastcontact numeric(13,3)
);

	 Load the data into the database using the following command. Replace the <path_to_file> with the actual path of the CSV file. Do this for all files. As before, if this command throws a permission error, you can use the \copy command from the psql shell.
	

COPY flights(et, icao24, lat, lon, velocity, heading,
 vertrate, callsign, onground, alert, spi, squawk,
 baroaltitude, geoaltitude, lastposupdate, lastcontact)
FROM '<path_to_file>' DELIMITER ',' CSV HEADER;

	 All the times in this dataset are in Unix timestamp (an integer) with timezone being UTC. So we need to convert them to PostgreSQL timestamp type.
	

ALTER TABLE flights
 ADD COLUMN et_ts timestamp,
 ADD COLUMN lastposupdate_ts timestamp,
 ADD COLUMN lastcontact_ts timestamp;

UPDATE flights
 SET et_ts = to_timestamp(et),
 lastposupdate_ts = to_timestamp(lastposupdate),
 lastcontact_ts = to_timestamp(lastcontact);

	 You can check the size of the database with:
	

SELECT pg_size_pretty(pg_total_relation_size('flights'));
		

Data Cleaning

				Delete all icao24 that have all NULL latitudes
			

-- icao24_with_null_lat is used to provide a list of rows that will be deleted
WITH icao24_with_null_lat AS (
 SELECT icao24, COUNT(lat)
 FROM flights
 GROUP BY icao24
 HAVING COUNT(lat) = 0)
DELETE
FROM flights
WHERE icao24 IN
-- this SELECT statement is needed for the IN statement to compare against a list
(SELECT icao24 FROM icao24_with_null_lat);
			

				Note: This data cleaning is not comprehensive. It was just to highlight that before creating trajectories, it may be very important to have a look at the data and do some cleaning as that will directly impact the quality of MobilityDB trajectories being created. If there as NULLs in MobilityDB trajectories, some operation on it can give error.
			

Setting up the Dashboard and Connecting to Data
			Source
		

			Data for the workshop is loaded into a MobilityDB database hosted on Azure, with all login information provided in the Sign-in and Connect to Data Source section below.
		

			The workshop is using the following settings in Grafana to connect to the postgres server on Azure. More detailed instruction to set up Grafana can be found in section 2.3 to 2.5 of the Dashboard and Visualization of Ship Trajectories (AIS) workshop.
		
	
					Name: OpenSkyLOCAL
				

	
					Host:
					20.79.254.53:5432
				

	
					Database: opensky
				

	
					User:
					mobilitydb-guest
				

	
					Password:
					mobilitydb@guest
				

	
					TLS/SSL Mode:
					disable
				

	
					Version:
					12+
				

			The data used for this workshop provided by The OpenSky Network. This is data from a 24 hour period from June 1, 2020 (dataset link). The raw data is originally provided in separate CSV documents for each hour of the day.
		

			Open a new browser and go to http://localhost:3000/ to work in your instance of Grafana. With a new dashboard we can start creating the panels below.
		

Part 2 - Working with Discrete Points

Visualizing 24-hour Flight Pattern of Single Airplane

			We will start by looking at a single airplane. Grafana proves to be a good way to quickly visualize our dataset and can be useful to support pre-processing and cleaning. If using a connection to the Azure database, required tables are already created.
		

			A full description of each parameter is included in the OpenSky original dataset readme. The table structure in the Azure dataset after loading and transformations looks like the following:
		
Figure 3.1. First row of table single_airframe, with 24 hours of flight information for airplane c827a6
			
[image: First row of table single_airframe, with 24 hours of flight information for airplane c827a6]

Figure 3.2. Full table single_airframe_traj for airplane c827a6
				with data in MobilityDB trajectories format
			
[image: Full table single_airframe_traj for airplane c827a6 with data in MobilityDB trajectories format]

Figure 3.3. First row of table flight_traj_sample, which includes 200 flight trajectories.
			
[image: First row of table flight_traj_sample, which includes 200 flight trajectories.]

Change Timezone in Grafana

				Make sure you are visualizing the data in the correct timezone. The data we had was in UTC. To change the timezone,
			
	
						Click on the time-range panel on the top-right of the window.
					
Figure 3.4. Grafana time range panel
[image: Grafana time range panel]

	
						In the pop-up window, on the bottom there is Change time settings. Click that to set the desired timezone.
					

Visualize the Coordinates of a Single Airplane

				Let's visualize the latitude and longitude coordinates of an airplane's journey throughout the day. For this one we will not color the geo-markers, but it is possible to color them using some criterion.
			
	
						Add a new panel
					

	
						Select OpenSkyLOCAL as the data source
					

	
						In Format as, change Time series to Table
						and choose Edit SQL
					

	
						Here you can add your SQL queries. Let's replace the existing query with the following SQL script:
					

-- icao24 is the unique identifier for each airframe (airplane)
SELECT et_ts, icao24, lat, lon
-- TABLESAMPLE SYSTEM (n) returns only n% of the data from the table.
FROM flights TABLESAMPLE SYSTEM (5)
WHERE icao24 IN ('738286') AND $__timeFilter(et_ts)
					

	
						Change the visualization type to Geomap.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → GPS location over time
							

						Map View
					
	
								Initial view: For this one zoom in on the visualization on the panel as you see fit and then click use current map settings button.
							

						Data Layer
					
	
								Layer type: → markers
							

	
								Style size → Fixed Value: 2
							

	
								Color → Green
							

				In this visualization we can see that the airplane is visiting different countries and almost completing a loop. This indicates that there are more than 1 trips (flights) completed by this single airplane. The coordinates are sparse because we are sampling the results using TABLESAMPLE SYSTEM (5) in our query. This is done to speed up the visualization.
			
Figure 3.5. Single airframe geopoints vs time
[image: Single airframe geopoints vs time]

Time-series Graphs for a Single Airplane

Velocity vs Time

				Following the similar steps to add a Geomap panel as before, we include the following SQL script. Note $__timeFilter() is a Grafana global variable. This global variable will inject time constraint SQL-conditions from Grafana's time range panel.
			
	
						In Format as, use Time series
					

SELECT et_ts AS "time", velocity
FROM flights
WHERE icao24 = 'c827a6' AND $__timeFilter(et_ts)
			
	
						Change the visualization type to Time Series.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → Single AirFrame - Velocity vs Time
							

				In the visualization we can see clearly that on this day, this airframe took 3 flights. That is why its speed curve has 3 humps. The zero speed towards the end of each hump is a clear indicator that plane stopped, thus it must have completed its flight.
			
Figure 3.6. Single airframe velocity vs time
[image: Single airframe velocity vs time]

Altitude vs Time

				Follow the similar steps to add a Geomap panel as before, we include the following SQL script.
			
	
						In Format as, we have Time series
					

SELECT et_ts AS "time",
 baroaltitude, geoaltitude
FROM flights
WHERE icao24 = 'c827a6' AND $__timeFilter(et_ts)
			
	
						Change the visualization type to Time Series.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → Single AirFrame - Altitude vs Time
							

				In the visualization we can again see that on this day, the airframe took 3 flights, as altitude reaches zero between each flight. There is some noise in the data, which appear as spikes. This would be almost impossible to spot in a tabular format, but on a line graph these data anomalies can be easily identified.
			
Figure 3.7. Single airframe altitude vs time
[image: Single airframe altitude vs time]

Vertical-Rate vs Time

				Follow the similar steps to add a Geomap panel as before, we include the following SQL script.
			
	
						In Format as, we have Time series
					

SELECT et_ts AS "time",
 vertrate
FROM flights
WHERE icao24 = 'c827a6' AND $__timeFilter(et_ts)
			
	
						Change the visualization type to Time Series.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → Single AirFrame - Verticle-Rate vs Time
							

				The positive values here represents the ascent of the plane. While at cruising altitude, the plane has almost zero vertical-rate and during decent this value becomes negative. So a sequence of positive values, then zero values followed by negative values would represent a single flight.
			
Figure 3.8. Single airframe vertrate vs time
[image: Single airframe vertrate vs time]

Callsign vs Time

				The callsign is a unique identifier used for a specific flight path. For example, ANZ1220 is the callsign of the Air New Zealand flight 1220 from Queenstown to Auckland in New Zealand. It is possible for single airplane to make the same flight more than once in a 24 hour period if it goes back and forth. This information will be used in later queries to partition an airplanes data into multiple flights.
			

				We can find the time at which the callsign of an airplane changes with the following steps.
			
	
						In Format as, we have Table
					

SELECT min(et_ts) AS "time", callsign
FROM flights
WHERE icao24 = 'c827a6'
GROUP BY callsign
			
	
						Change the visualization type to Table.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → Single AirFrame - Callsign vs Time
							

				In the visualization we can see that this airplane completed three flights and started the fourth one towards the very end of the day. We also see there is some NULL data in the callsign column which is why the first timestamp doesn't have a corresponding callsign.
			
Figure 3.9. Single airframe callsign vs time
[image: Single airframe callsign vs time]

Part 3 - Working with Continuous Trajectories in MobilityDB

			For the following queries, we will make use of trajectories for aggregation and creating effective splits in our data based on parameters that change in time.
		
Creating MobilityDB Trajectories

				This step is completed once, only on the ingestion of data. It is shown below to provide an understanding of how to do it. With temporal data types and MobilityDB functionality, we can see the queries are very intuitive to create.
			

				We first create a geometry point. This treats each latitude and longitude as a point in space. 4326 is the SRID.
			

ALTER TABLE flights
	ADD COLUMN geom geometry(Point, 4326);

UPDATE flights SET
 geom = ST_SetSRID(ST_MakePoint(lon, lat), 4326);

AirFrame Trajectories

		 Now we are ready to construct airframe or airplane trajectories out of their individual observations. Each icao24 in our dataset represents a single airplane.
		

		 We can create a composite index on icao24 (unique to each plane) and et_ts (timestamps of observations) to help improve the performance of trajectory generation.
		

CREATE INDEX icao24_time_index
	ON flights (icao24, et_ts);

		 We create trajectories for a single airframe because:
		
	
			 this query serves as a simple example of how to use MobilityDB to create trajectories
			

	
				these kind of trajectories can be very important for plane manufacturer, as they are interested in the airplane's analysis.
			

	
				we are creating the building blocks for future queries. Each row would represent a single flight, where flight is identified by icao24 and callsign.
			

CREATE TABLE airframe_traj(icao24, trip, velocity, heading, vertrate, callsign, squawk,
 geoaltitude) AS
SELECT icao24,
 tgeompointSeq(array_agg(tgeompoint(geom, et_ts) ORDER BY et_ts)
 FILTER (WHERE geom IS NOT NULL)),
 tfloatSeq(array_agg(tfloat(velocity, et_ts) ORDER BY et_ts)
 FILTER (WHERE velocity IS NOT NULL)),
 tfloatSeq(array_agg(tfloat(heading, et_ts) ORDER BY et_ts)
 FILTER (WHERE heading IS NOT NULL)),
 tfloatSeq(array_agg(tfloat(vertrate, et_ts) ORDER BY et_ts)
 FILTER (WHERE vertrate IS NOT NULL)),
 ttextSeq(array_agg(ttext(callsign, et_ts) ORDER BY et_ts)
 FILTER (WHERE callsign IS NOT NULL)),
 tintSeq(array_agg(tint(squawk, et_ts) ORDER BY et_ts)
 FILTER (WHERE squawk IS NOT NULL)),
 tfloatSeq(array_agg(tfloat(geoaltitude, et_ts) ORDER BY et_ts)
 FILTER (WHERE geoaltitude IS NOT NULL))
FROM flights
GROUP BY icao24;
				

					Here we create a new table for all the trajectories. We select all the attributes of interest that change over time. We can follow the transformation from the inner call to the outer call:
				
	
							tgeompoint: combines each geometry point(lat, long) with the timestamp where that point existed
						

	
							array_agg: aggregates all the instants together into a single array for each item in the GROUP BY. In this case, it will create an array for each icao24
						

	
							tgeompointSeq: constructs the array as a sequence which can be manipulated with MobilityDB functionality. The same approach is used for each trajectory, with the function used changing depending on the datatype.
						

Flight Trajectories

				Right now we have, in a single row, an airframe's (where an airframe is a single physical airplane) entire day's trip information. We would like to segment that information per flight (an airframe flying under a specific callsign). This query segments the airframe trajectories (in temporal columns) based on the time period of the callsign. Below we explain the query and the reason behind segmenting the data this way.
			

-- Each row from airframe will create a new row in flight_traj depending on when the
-- callsign changes, regardless of whether a plane repeats the same flight multiple
-- times in any period

-- Airplane123 (airframe_traj) |-------------------------|
-- Flightpath1 (flight_traj) |-----|
-- Flightpath2 (flight_traj) |--------|
-- Flightpath1 (flight_traj) |-------|
-- Flightpath3 (flight_traj) |--|

CREATE TABLE flight_traj(icao24, callsign, flight_period, trip, velocity, heading,
 vertrate, squawk, geoaltitude) AS
 -- callsign sequence unpacked into rows to split all other temporal sequences.
WITH airframe_traj_with_unpacked_callsign AS (
 SELECT icao24, trip, velocity, heading, vertrate, squawk, geoaltitude,
 startValue(unnest(segments(callsign))) AS start_value_callsign,
 unnest(segments(callsign))::tstzspan AS callsignSegmentPeriod
 FROM airframe_traj)
SELECT icao24 AS icao24, start_value_callsign AS callsign,
 callsignSegmentPeriod AS flight_period,
 atTime(trip, callsignSegmentPeriod) AS trip,
 atTime(velocity, callsignSegmentPeriod) AS velocity,
 atTime(heading, callsignSegmentPeriod) AS heading,
 atTime(vertrate, callsignSegmentPeriod) AS vertrate,
 atTime(squawk, callsignSegmentPeriod) AS squawk,
 atTime(geoaltitude, callsignSegmentPeriod) AS geoaltitude
FROM airframe_traj_with_unpacked_callsign;
			

				Note:
				We could have tried to create the above (table flight_traj) per flight trajectories by simply including callsign in the GROUP BY statement in the query used to create the previous airframe_traj table (GROUP BY icao24, callsign;).
			

				The problem with this solution: This approach would put the trajectory data of two	distinct flights where that airplane and flight number are the same in a single row, which is not correct.
			

				MobilityDB functions helped us avoid the use of several hardcoded conditions that depend on user knowledge of the data. This approach is very generic and can be applied anytime we want to split a trajectory by the inflection points in time of some other trajectory.
			

Aggregating Flight Statistics

			We can now use our trajectories to pull flight specific statistics very easily.
		
Average Velocity of Each Flight

	
						In Format as, we have
						Table
					

-- Average flight speeds during flight
SELECT callsign,twavg(velocity) AS average_velocity
FROM flight_traj
WHERE twavg(velocity)IS NOT NULL -- drop rows without velocity data
AND twavg(velocity) < 1500 -- removes erroneous data
ORDER BY twavg(velocity) desc;
					

	
						Change the visualization type to Bar gauge.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows
					

						Panel Options
					
	
								Title → Average Flight Speed Show → All values
							

						Bar gauge
					
	
								Orientation → Horizontal
							

						Standard Options
					
	
								Unit → meters/second (m/s)
							

	
								Min → 200
							

						The settings we adjust improve the visualization by cutting the bar graph values of 0-200, improving the resolution at higher ranges to see differences.
					
Figure 3.10. Average flight speed visualization
[image: Average flight speed visualization]

Number of Private and Commercial Flights

				We can easily combine results from multiple queries in the same visualization in Grafana, simplifying the queries themselves. Here we apply some domain knowledge of sport pilot aircraft license limits for altitude and speed to provide an estimated count of each.
			
	
						In Format as, we have Table
					

-- Flights completed by private pilots (estimate)
SELECT COUNT(callsign) AS private_flight
FROM flight_traj
WHERE (maxValue(velocity) IS NOT NULL -- remove flights without velocity
 AND maxValue(velocity) <= 65) -- sport aircraft max is 140mph (65m/s)
 AND (maxValue(geoaltitude) IS NOT NULL -- remove flights without altitude
 AND maxValue(geoaltitude) <= 5500); --18,000ft (5,500m) max for private pilot

-- Count of commercial flights (estimate)
SELECT COUNT(callsign) AS commercial_flight
FROM flight_traj
WHERE (maxValue(velocity) IS NOT NULL
 AND maxValue(velocity) > 65)
 AND (maxValue(geoaltitude) IS NOT NULL
 AND maxValue(geoaltitude) > 5500);

			In Grafana, when we are in the query editor we can click on + Query at the bottom to add multiple queries that provide different results.
		
Figure 3.11. Multiple queries providing results for a single visualization
[image: Multiple queries providing results for a single visualization]

	
				Change the visualization type to Stat.
		

				To label the data for each result separately, choose Overrides at the top of the options panel on the right. Here you can override global panel settings for specific attributes as shown below.
		
Figure 3.12. Override options for panel with multiple queries
[image: Override options for panel with multiple queries]

		The final statistics visualization will look like this:
	
Figure 3.13. Statistic visualization of number of flights by license type
[image: Statistic visualization of number of flights by license type]

Flights Taking-off in Some Interval of Time (User-Defined)

				Note: This query makes used of a sample set of data that has 200 flights to return results. flight_traj_sample is just a sampled version of flight_traj. As of the writing of this workshop, Grafana does not support display of vectors, and so individual		 latitude and longitude points are used as a proxy.
			

			In order to make the query use Grafana global time range panel replace the hard-coded timestamps with [${__from:date}, ${__to:date}).
			

WITH timePeriod(Period) AS (
 SELECT tstzspan '[2020-06-01 02:35:00, 2020-06-01 02:55:00)'),
flightTrajTimeSlice (icao24, callsign, time_slice_trip, timeSliceGeoaltitude,
 timeSliceVertrate) AS (
 SELECT icao24, callsign, atTime(trip, Period), atTime(geoaltitude, Period),
 atTime(vertrate, Period)
 FROM flight_traj_sample TABLESAMPLE SYSTEM (20), timePeriod),
flightTrajTimeSliceAscent(icao24, callsign, ascendingTrip, ascendingGeoaltitude,
 ascendingVertrate) AS (
 SELECT icao24, callsign,
 atTime(time_slice_trip,
 sequenceN(atValues(timeSliceVertrate, floatspan '[1,200]'), 1)::tstzspan),
 atTime(timeSliceGeoaltitude,
 sequenceN(atValues(timeSliceVertrate, floatspan '[1,20]'),1)::tstzspan),
		atTime(timeSliceVertrate,
 sequenceN(atValues(timeSliceVertrate, floatspan '[1,20]'),1)::tstzspan)
	FROM flightTrajTimeSlice),
finalOutput AS (
 SELECT icao24, callsign,
 getValue(unnest(instants(ascendingGeoaltitude))) AS geoaltitude,
 getValue(unnest(instants(ascendingVertrate))) AS vertrate,
 ST_X(getValue(unnest(instants(ascendingTrip)))) AS lon,
 ST_Y(getValue(unnest(instants(ascendingTrip)))) AS lat
 FROM flightTrajTimeSliceAscent)
SELECT *
FROM finalOutput
WHERE vertrate IS NOT NULL AND geoaltitude IS NOT NULL;
			

				We explain next the above query. Table timePeriod specifies a user-specified time period. Table flightTrajTimeSlice clips all the temporal columns to the given time period. Then, in the flightTrajTimeSliceAscent, atSpan clips the temporal data to create ranges where the vertrate was between '[1, 20]'. This vertrate means an aircraft was ascending. Then, sequenceN selects the first sequence from the generated sequences. This first sequence is takeoff and eliminates mid-flight ascents. Finally atTime returns the period of the first sequence. The final table finalOutput uses unnest to unpack the temporal data into rows for visualization in Grafana. Each row will contain a latitude, longitude, altitude, and vertrate at those locations.
			

				Tips for QGIS visualization: QGIS uses geometry points for visualization, so for that in the third CTE you can use trajectory function on ascendingTrip and unnest the result.
			

				We will modify make the follow adjustments for the visualization.
			
	
						Change the visualization type to Geomap.
					

	
						The options (visualization settings - on the right side of the screen) should be as follows:
					

						Panel Options
					
	
								Title → Flight Ascent in Time Window
							

						Data Layer:
					
	
								Layer type: Markers
							

	
								Location: Coords
							

	
								Latitude field: lat
							

	
								Longitude field: lon
							

	
								Styles
							
	
										Size: geoaltitude
									

	
										Min: 1
									

	
										Max: 5
									

	
										Color: vertrate
									

	
										Fill opacity: 0.5
									

						Standard Options:
					
	
								Unit: meters/second (m/s)
							

	
								Color scheme: Green-Yellow-Red (by value)
							

	
						We will also add a manual override (top right of panel options, beside "All") to limit the minimum value of vertrate. This will make all values below the minimum the same color, making larger values more obvious. This can be used to quickly pinpoint locations where a large rate of ascent existed.
					

						Overrides
					
	
								Add field override > Fields with name > vertrate
							
	
										Min: 5
									

	
										Max: 20
									

				Here is a zoomed in version of how each individual flight ascent will look, as well as a view of multiple flights at the same time. The marker size is increasing with altitude, and the color is showing more aggressive vertical ascent rates. We can see towards the end of the visualized ascent period, there is a short increased vertical ascent rate.
			
Figure 3.14. Zoomed in view of flight ascent
[image: Zoomed in view of flight ascent]

				The final visualization will look like the below.
			
Figure 3.15. Final visualization with multiple flight ascents
[image: Final visualization with multiple flight ascents]

Complete Flight Data Business Intelligence Dashboard

				The dashboard, with all the visualizations at the same time, will look like the screenshot below. Here we can continue to extend the dashboards functionality by adding more dynamic variables to have the individual flight data on the left generated with a user query or selection based on the overview take-off information on the right. This is what really empowers decision makers and subject-matter experts (SMEs) to quickly move through data and hone-in on important aspects that may have otherwise been over-looked.
			
Figure 3.16. Flight data business intelligence dashboard
[image: Flight data business intelligence dashboard]

Chapter 4. Managing GTFS Data

The General Transit Feed Specification (GTFS) defines a common format for public transportation schedules and associated geographic information. GTFS-realtime is used to specify real-time transit data. Many transportation agencies around the world publish their data in GTFS and GTFS-realtime format and make them publicly available. A well-known repository containing such data is OpenMobilityData.
In this chapter, we illustrate how to load GTFS data in MobilityDB. For this, we first need to import the GTFS data into PostgreSQL and then transform this data so that it can be loaded into MobilityDB. The data used in this tutorial is obtained from STIB-MIVB, the Brussels public transportation company and is available as a ZIP file. You must be aware that GTFS data is typically of big size. In order to reduce the size of the dataset, this file only contains schedules for one week and five transportation lines, whereas typical GTFS data published by STIB-MIVB contains schedules for one month and 99 transportation lines. In the reduced dataset used in this tutorial the final table containing the GTFS data in MobilityDB format has almost 10,000 trips and its size is 241 MB. Furtheremore, we need several temporary tables to transform GTFS format into MobilityDB and these tables are also big, the largest one has almost 6 million rows and its size is 621 MB.
Several tools can be used to import GTFS data into PostgreSQL. For example, one publicly available in Github can be found here. These tools load GTFS data into PostgreSQL tables, allowing one to perform multiple imports of data provided by the same agency covering different time frames, perform various complex tasks including data validation, and take into account variations of the format provided by different agencies, updates of route information among multiple imports, etc. For the purpose of this tutorial we do a simple import and transformation using only SQL. This is enough for loading the data set we are using but a much more robust solution should be used in an operational environment, if only for coping with the considerable size of typical GTFS data, which would require parallelization of this task.
Loading GTFS Data in PostgreSQL

The ZIP file with the data for this tutorial contains a set of CSV files (with extension .txt) as follows:
			
	agency.txt contains the description of the transportation agencies provinding the services (a single one in our case).

	calendar.txt contains service patterns that operate recurrently such as, for example, every weekday.

	calendar_dates.txt define exceptions to the default service patterns defined in calendar.txt. There are two types of exceptions: 1 means that the service has been added for the specified date, and 2 means that the service has been removed for the specified date.

	routes.txt contains transit routes. A route is a group of trips that are displayed to riders as a single service.

	shapes.txt contains the vehicle travel paths, which are used to generate the corresponding geometry.

	stop_times.txt contains times at which a vehicle arrives at and departs from stops for each trip.

	translations.txt contains the translation of the route information in French and Dutch. This file is not used in this tutorial.

	trips.txt contains trips for each route. A trip is a sequence of two or more stops that occur during a specific time period.

		

			We decompress the file with the data into a directory. This can be done using the command.
			

unzip gtfs_data.zip
			

			We suppose in the following that the directory used is as follows /home/gtfs_tutorial/.
		
First, you need to create a new database, gtfs, and issue the create extension command:
 CREATE EXTENSION mobilityDB CASCADE;
. We then create the tables to be loaded with the data in the CSV files as follows.
				

CREATE TABLE agency (
 agency_id text DEFAULT '',
 agency_name text DEFAULT NULL,
 agency_url text DEFAULT NULL,
 agency_timezone text DEFAULT NULL,
 agency_lang text DEFAULT NULL,
 agency_phone text DEFAULT NULL,
 CONSTRAINT agency_pkey PRIMARY KEY (agency_id)
);

CREATE TABLE calendar (
 service_id text,
 monday int NOT NULL,
 tuesday int NOT NULL,
 wednesday int NOT NULL,
 thursday int NOT NULL,
 friday int NOT NULL,
 saturday int NOT NULL,
 sunday int NOT NULL,
 start_date date NOT NULL,
 end_date date NOT NULL,
 CONSTRAINT calendar_pkey PRIMARY KEY (service_id)
);

CREATE TABLE exception_types (
 exception_type int PRIMARY KEY,
 description text
);

CREATE TABLE calendar_dates (
 service_id text,
 date date NOT NULL,
 exception_type int REFERENCES exception_types(exception_type)
);
CREATE INDEX calendar_dates_date_idx ON calendar_dates (date);

CREATE TABLE routes (
 route_id text,
 route_short_name text DEFAULT '',
 route_long_name text DEFAULT '',
 route_desc text DEFAULT '',
 route_type int,
 route_url text,
 route_color text,
 route_text_color text,
 CONSTRAINT routes_pkey PRIMARY KEY (route_id)
);

CREATE TABLE shapes (
 shape_id text NOT NULL,
 shape_pt_lat double precision NOT NULL,
 shape_pt_lon double precision NOT NULL,
 shape_pt_sequence int NOT NULL,
 shape_dist_traveled float NOT NULL
);
CREATE INDEX shapes_shape_id_idx ON shapes (shape_id);

-- Create a table to store the shape geometries
CREATE TABLE shape_geoms (
 shape_id text NOT NULL,
 shape_geom geometry('LINESTRING', 3857),
 CONSTRAINT shape_geom_pkey PRIMARY KEY (shape_id)
);

CREATE TABLE location_types (
 location_type int PRIMARY KEY,
 description text
);

CREATE TABLE stops (
 stop_id text,
 stop_code text,
 stop_name text DEFAULT NULL,
 stop_desc text DEFAULT NULL,
 stop_lat double precision,
 stop_lon double precision,
 zone_id text,
 stop_url text,
 location_type integer REFERENCES location_types(location_type),
 parent_station integer,
 stop_geom geometry('POINT', 3857),
 platform_code text DEFAULT NULL,
 CONSTRAINT stops_pkey PRIMARY KEY (stop_id)
);

CREATE TABLE pickup_dropoff_types (
 type_id int PRIMARY KEY,
 description text
);

CREATE TABLE stop_times (
 trip_id text NOT NULL,
 -- Check that casting to time interval works
 arrival_time interval CHECK (arrival_time::interval = arrival_time::interval),
 departure_time interval CHECK (departure_time::interval = departure_time::interval),
 stop_id text,
 stop_sequence int NOT NULL,
 pickup_type int REFERENCES pickup_dropoff_types(type_id),
 drop_off_type int REFERENCES pickup_dropoff_types(type_id),
 CONSTRAINT stop_times_pkey PRIMARY KEY (trip_id, stop_sequence)
);
CREATE INDEX stop_times_key ON stop_times (trip_id, stop_id);
CREATE INDEX arr_time_index ON stop_times (arrival_time);
CREATE INDEX dep_time_index ON stop_times (departure_time);

CREATE TABLE trips (
 route_id text NOT NULL,
 service_id text NOT NULL,
 trip_id text NOT NULL,
 trip_headsign text,
 direction_id int,
 block_id text,
 shape_id text,
 CONSTRAINT trips_pkey PRIMARY KEY (trip_id)
);

INSERT INTO exception_types (exception_type, description) VALUES
(1, 'service has been added'),
(2, 'service has been removed');

INSERT INTO location_types(location_type, description) VALUES
(0,'stop'),
(1,'station'),
(2,'station entrance');

INSERT INTO pickup_dropoff_types (type_id, description) VALUES
(0,'Regularly Scheduled'),
(1,'Not available'),
(2,'Phone arrangement only'),
(3,'Driver arrangement only');
				

			We created one table for each CSV file. In addition, we created a table shape_geoms in order to assemble all segments composing a route into a single geometry and auxiliary tables exception_types, location_types, and pickup_dropoff_types containing acceptable values for some columns in the CSV files.
		

			We can load the CSV files into the corresponding tables as follows. As in the previous examples, if you experience a permission
 denied error, you can use the \copy command from the psql shell instead of the COPY command.
			

COPY calendar(service_id,monday,tuesday,wednesday,thursday,friday,saturday,sunday,
start_date,end_date) FROM '/home/gtfs_tutorial/calendar.txt' DELIMITER ',' CSV HEADER;
COPY calendar_dates(service_id,date,exception_type)
FROM '/home/gtfs_tutorial/calendar_dates.txt' DELIMITER ',' CSV HEADER;
COPY stop_times(trip_id,arrival_time,departure_time,stop_id,stop_sequence,
pickup_type,drop_off_type) FROM '/home/gtfs_tutorial/stop_times.txt' DELIMITER ','
CSV HEADER;
COPY trips(route_id,service_id,trip_id,trip_headsign,direction_id,block_id,shape_id)
FROM '/home/gtfs_tutorial/trips.txt' DELIMITER ',' CSV HEADER;
COPY agency(agency_id,agency_name,agency_url,agency_timezone,agency_lang,agency_phone)
FROM '/home/gtfs_tutorial/agency.txt' DELIMITER ',' CSV HEADER;
COPY routes(route_id,route_short_name,route_long_name,route_desc,route_type,route_url,
route_color,route_text_color) FROM '/home/gtfs_tutorial/routes.txt' DELIMITER ','
CSV HEADER;
COPY shapes(shape_id,shape_pt_lat,shape_pt_lon,shape_pt_sequence)
FROM '/home/gtfs_tutorial/shapes.txt' DELIMITER ',' CSV HEADER;
COPY stops(stop_id,stop_code,stop_name,stop_desc,stop_lat,stop_lon,zone_id,stop_url,
location_type,parent_station) FROM '/home/gtfs_tutorial/stops.txt' DELIMITER ','
CSV HEADER;
			

			Finally, we create the geometries for routes and stops as follows.
			

INSERT INTO shape_geoms
SELECT shape_id, ST_MakeLine(array_agg(
 ST_Transform(ST_Point(shape_pt_lon, shape_pt_lat, 4326), 3857) ORDER BY shape_pt_sequence))
FROM shapes
GROUP BY shape_id;

UPDATE stops
SET stop_geom = ST_Transform(ST_Point(stop_lon, stop_lat, 4326), 3857);
			

			The visualization of the routes and stops in QGIS is given in Figure 4.1, “Visualization of the routes and stops for the GTFS data from Brussels.”. In the figure, red lines correspond to the trajectories of vehicles, while orange points correspond to the location of stops.
		
Figure 4.1. Visualization of the routes and stops for the GTFS data from Brussels.
[image: Visualization of the routes and stops for the GTFS data from Brussels.]

Transforming GTFS Data for MobilityDB

			We start by creating a table that contains couples of service_id and date defining the dates at which a service is provided.
			

DROP TABLE IF EXISTS service_dates;
CREATE TABLE service_dates AS (
SELECT service_id, date_trunc('day', d)::date AS date
FROM calendar c, generate_series(start_date, end_date, '1 day'::interval) AS d
WHERE (
 (monday = 1 AND extract(isodow FROM d) = 1) OR
 (tuesday = 1 AND extract(isodow FROM d) = 2) OR
 (wednesday = 1 AND extract(isodow FROM d) = 3) OR
 (thursday = 1 AND extract(isodow FROM d) = 4) OR
 (friday = 1 AND extract(isodow FROM d) = 5) OR
 (saturday = 1 AND extract(isodow FROM d) = 6) OR
 (sunday = 1 AND extract(isodow FROM d) = 7)
)
EXCEPT
SELECT service_id, date
FROM calendar_dates WHERE exception_type = 2
UNION
SELECT c.service_id, date
FROM calendar c JOIN calendar_dates d ON c.service_id = d.service_id
WHERE exception_type = 1 AND start_date <= date AND date <= end_date
);
			

			This table transforms the service patterns in the calendar table valid between a start_date and an end_date taking into account the week days, and then remove the exceptions of type 2 and add the exceptions of type 1 that are specified in table calendar_dates.
		

			We now create a table trip_stops that determines the stops for each trip.
			

DROP TABLE IF EXISTS trip_stops;
CREATE TABLE trip_stops (
 trip_id text,
 stop_sequence integer,
 no_stops integer,
 route_id text,
 service_id text,
 shape_id text,
 stop_id text,
 arrival_time interval,
 perc float
);

INSERT INTO trip_stops (trip_id, stop_sequence, no_stops, route_id, service_id,
 shape_id, stop_id, arrival_time)
SELECT t.trip_id, stop_sequence, MAX(stop_sequence) OVER (PARTITION BY t.trip_id),
 route_id, service_id, shape_id, stop_id, arrival_time
FROM trips t JOIN stop_times s ON t.trip_id = s.trip_id;

UPDATE trip_stops t
SET perc = CASE
WHEN stop_sequence = 1 THEN 0.0
WHEN stop_sequence = no_stops THEN 1.0
ELSE ST_LineLocatePoint(g.shape_geom, s.stop_geom)
END
FROM shape_geoms g, stops s
WHERE t.shape_id = g.shape_id AND t.stop_id = s.stop_id;
			

			We perform a join between trips and stop_times and determines the number of stops in a trip. Then, we compute the relative location of a stop within a trip using the function ST_LineLocatePoint.
		

			We now create a table trip_segs that defines the segments between two consecutive stops of a trip.
			

DROP TABLE IF EXISTS trip_segs;
CREATE TABLE trip_segs (
 trip_id text,
 route_id text,
 service_id text,
 stop1_sequence integer,
 stop2_sequence integer,
 no_stops integer,
 shape_id text,
 stop1_arrival_time interval,
 stop2_arrival_time interval,
 perc1 float,
 perc2 float,
 seg_geom geometry,
 seg_length float,
 no_points integer,
 PRIMARY KEY (trip_id, stop1_sequence)
);

INSERT INTO trip_segs (trip_id, route_id, service_id, stop1_sequence, stop2_sequence,
 no_stops, shape_id, stop1_arrival_time, stop2_arrival_time, perc1, perc2)
WITH temp AS (
 SELECT trip_id, route_id, service_id, stop_sequence,
 LEAD(stop_sequence) OVER w AS stop_sequence2,
 MAX(stop_sequence) OVER (PARTITION BY trip_id),
 shape_id, arrival_time, LEAD(arrival_time) OVER w, perc, LEAD(perc) OVER w
 FROM trip_stops WINDOW w AS (PARTITION BY trip_id ORDER BY stop_sequence)
)
SELECT * FROM temp WHERE stop_sequence2 IS NOT null;

UPDATE trip_segs t
SET seg_geom = ST_LineSubstring(g.shape_geom, perc1, perc2)
FROM shape_geoms g
WHERE t.shape_id = g.shape_id;

UPDATE trip_segs
SET seg_length = ST_Length(seg_geom), no_points = ST_NumPoints(seg_geom);
			

			We use twice the LEAD window function for obtaning the next stop and the next percentage of a given stop and the MAX window function for obtaining the total number of stops in a trip. Then, we generate the geometry of the segment betwen two stops using the function ST_LineSubstring and compute the length and the number of points in the segment with functions ST_Length and ST_NumPoints.
		

			The geometry of a segment is a linestring containing multiple points. From table trip_stops we know at which time the trip arrived at the first point and at the last point of the segment. To determine at which time the trip arrived at the intermediate points of the segments, we create a table trip_points that contains all the points composing the geometry of a segment.
			

DROP TABLE IF EXISTS trip_points;
CREATE TABLE trip_points (
 trip_id text,
 route_id text,
 service_id text,
 stop1_sequence integer,
 point_sequence integer,
 point_geom geometry,
 point_arrival_time interval,
 PRIMARY KEY (trip_id, stop1_sequence, point_sequence)
);

INSERT INTO trip_points (trip_id, route_id, service_id, stop1_sequence,
 point_sequence, point_geom, point_arrival_time)
WITH temp1 AS (
 SELECT trip_id, route_id, service_id, stop1_sequence, stop2_sequence,
 no_stops, stop1_arrival_time, stop2_arrival_time, seg_length,
 (dp).path[1] AS point_sequence, no_points, (dp).geom as point_geom
 FROM trip_segs, ST_DumpPoints(seg_geom) AS dp),
temp2 AS (
 SELECT trip_id, route_id, service_id, stop1_sequence, stop1_arrival_time,
 stop2_arrival_time, seg_length, point_sequence, no_points, point_geom
 FROM temp1
 WHERE point_sequence != no_points OR stop2_sequence = no_stops),
temp3 AS (
 SELECT trip_id, route_id, service_id, stop1_sequence, stop1_arrival_time,
 stop2_arrival_time, point_sequence, no_points, point_geom,
 ST_Length(ST_MakeLine(array_agg(point_geom) OVER w)) / seg_length AS perc
 FROM temp2 WINDOW w AS (PARTITION BY trip_id, service_id, stop1_sequence
 ORDER BY point_sequence))
SELECT trip_id, route_id, service_id, stop1_sequence, point_sequence, point_geom,
 CASE
 WHEN point_sequence = 1 THEN stop1_arrival_time
 WHEN point_sequence = no_points THEN stop2_arrival_time
 ELSE stop1_arrival_time + ((stop2_arrival_time - stop1_arrival_time) * perc)
 END AS point_arrival_time
FROM temp3;
			

			In the temporary table temp1 we use the function ST_DumpPoints to obtain the points composing the geometry of a segment. Nevertheless, this table contains duplicate points, that is, the last point of a segment is equal to the first point of the next one. In the temporary table temp2 we filter out the last point of a segment unless it is the last segment of the trip. In the temporary table temp3 we compute in the attribute perc the relative position of a point within a trip segment with window functions. For this we use the function ST_MakeLine to construct the subsegment from the first point of the segment to the current one, determine the length of the subsegment with function ST_Length and divide this length by the overall segment length. Finally, in the outer query we use the computed percentage to determine the arrival time to that point.
		

			Our last temporary table trips_input contains the data in the format that can be used for creating the MobilityDB trips.
			

DROP TABLE IF EXISTS trips_input;
CREATE TABLE trips_input (
 trip_id text,
 route_id text,
 service_id text,
 date date,
 point_geom geometry,
 t timestamptz
);

INSERT INTO trips_input
SELECT trip_id, route_id, t.service_id, date, point_geom, date + point_arrival_time AS t
FROM trip_points t JOIN
(SELECT service_id, MIN(date) AS date FROM service_dates GROUP BY service_id) s
ON t.service_id = s.service_id;
			

			In the inner query of the INSERT statement, we select the first date of a service in the service_dates table and then we join the resulting table with the trip_points table to compute the arrival time at each point composing the trips. Notice that we filter the first date of each trip for optimization purposes because in the next step below we use the shift function to compute the trips to all other dates. Alternatively, we could join the two tables but this will be considerably slower for big GTFS files.
		

			Finally, table trips_mdb contains the MobilityDB trips.
			

DROP TABLE IF EXISTS trips_mdb;
CREATE TABLE trips_mdb (
	trip_id text NOT NULL,
	service_id text NOT NULL,
	route_id text NOT NULL,
	date date NOT NULL,
	trip tgeompoint,
	PRIMARY KEY (trip_id, date)
);

INSERT INTO trips_mdb(trip_id, service_id, route_id, date, trip)
SELECT trip_id, service_id, route_id, date, tgeompointSeq(array_agg(
 tgeompoint(point_geom, t) ORDER BY T))
FROM trips_input
GROUP BY trip_id, service_id, route_id, date;

INSERT INTO trips_mdb(trip_id, service_id, route_id, date, trip)
SELECT trip_id, route_id, t.service_id, d.date,
 shiftTime(trip, make_interval(days => d.date - t.date))
FROM trips_mdb t JOIN service_dates d ON t.service_id = d.service_id AND t.date != d.date;
			

			In the first INSERT statement we group the rows in the trips_input table by trip_id and date while keeping the route_id atribute, use the array_agg function to construct an array containing the temporal points composing the trip ordered by time, and compute the trip from this array using the function tgeompointseq. As explained above, table trips_input only contains the first date of a trip. In the second INSERT statement we add the trips for all the other dates with the function shift.
		

Chapter 5. Managing Google Location History

Loading Google Location History Data

By activating the Location History in your Google account, you let Google track where you go with every mobile device. You can view and manage your Location History information through Google Maps Timeline. The data is provided in JSON format. An example of such a file is as follows.
			

{
"locations" : [{
	"timestampMs" : "1525373187756",
	"latitudeE7" : 508402936,
	"longitudeE7" : 43413790,
	"accuracy" : 26,
	"activity" : [{
		"timestampMs" : "1525373185830",
		"activity" : [{
			"type" : "STILL",
			"confidence" : 44
		}, {
			"type" : "IN_VEHICLE",
			"confidence" : 16
		}, {
			"type" : "IN_ROAD_VEHICLE",
			"confidence" : 16
		}, {
			"type" : "UNKNOWN",
			"confidence" : 12
		}, {
			"type" : "IN_RAIL_VEHICLE",
			"confidence" : 12
...
			

		
If we want to load location information into MobilityDB we only need the fields longitudeE7, latitudeE7, and timestampMs. To convert the original JSON file into a CSV file containing only these fields we can use jq, a command-line JSON processor. The following command
			

cat location_history.json | jq -r ".locations[] | {latitudeE7, longitudeE7, timestampMs}
| [.latitudeE7, .longitudeE7, .timestampMs] | @csv" > location_history.csv
			

			produces a CSV file of the following format
			

508402936,43413790,"1525373187756"
508402171,43413455,"1525373176729"
508399229,43413304,"1525373143463"
508377525,43411499,"1525373113741"
508374906,43412597,"1525373082542"
508370337,43418136,"1525373052593"
...
			

			The above command works well for files of moderate size since by default jq loads the whole input text in memory. For very large files you may consider the --stream option of jq, which parses input texts in a streaming fashion.
		
Now we can import the generated CSV file into PostgreSQL as follows. If the COPY command throws a permission
		error, you can instead use the \copy command of psql to import the CSV file.
			

DROP TABLE IF EXISTS location_history;

CREATE TABLE location_history (
	latitudeE7 float,
	longitudeE7 float,
	timestampMs bigint,
	date date
);

COPY location_history(latitudeE7, longitudeE7, timestampMs) FROM
'/home/location_history/location_history.csv' DELIMITER ',' CSV;

UPDATE location_history
SET date = date(to_timestamp(timestampMs / 1000.0)::timestamptz);
			

			Notice that we added an attribute date to the table so we can split the full location history, which can comprise data for several years, by date. Since the timestamps are encoded in milliseconds since 1/1/1970, we divide them by 1,000 and apply the functions to_timestamp and date to obtain corresponding date.
		

			We can now transform this data into MobilityDB trips as follows.
			

DROP TABLE IF EXISTS locations_mdb;

CREATE TABLE locations_mdb (
	date date NOT NULL,
	trip tgeompoint,
	trajectory geometry,
	PRIMARY KEY (date)
);

INSERT INTO locations_mdb(date, trip)
SELECT date, tgeompointSeq(array_agg(tgeompoint(
	ST_SetSRID(ST_Point(longitudeE7/1e7, latitudeE7/1e7),4326),
	to_timestamp(timestampMs / 1000.0)::timestamptz) ORDER BY timestampMs))
FROM location_history
GROUP BY date;

UPDATE locations_mdb
SET trajectory = trajectory(trip);
			

			We convert the longitude and latitude values into standard coordinates values by dividing them by 107. These can be converted into PostGIS points in the WGS84 coordinate system with the functions ST_Point and ST_SetSRID. Also, we convert the timestamp values in miliseconds to timestamptz values. We can now apply the function
			tgeompointinst to create a tgeompoint of instant duration from the point and the timestamp, collect all temporal points of a day into an array with the function array_agg, and finally, create a temporal point containing all the locations of a day using function tgeompointseq. We added to the table a trajectory attribute to visualize the location history in QGIS is given in Figure 5.1, “Visualization of the Google location history loaded into MobilityDB.”.
		
Figure 5.1. Visualization of the Google location history loaded into MobilityDB.
[image: Visualization of the Google location history loaded into MobilityDB.]

Chapter 6. Managing GPX Data

Loading GPX Data

			GPX, or GPS Exchange Format, is an XML data format for GPS data. Location data (and optionally elevation, time, and other information) is stored in tags and can be interchanged between GPS devices and software. Conceptually, a GPX file contains tracks, which are a record of where a moving object has been, and routes, which are suggestions about where it might go in the future. Furthermore, both tracks and routes and composed by points. The following is a truncated (for brevity) example GPX file.
			

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<gpx version="1.1"
xmlns="http://www.topografix.com/GPX/1/1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd"
creator="Example creator">
<metadata>
	<name>Dec 14, 2014 4:32:04 PM</name>
	<author>Example creator</author>
	<link href="https://..." />
	<time>2014-12-14T14:32:04.650Z</time>
</metadata>
<trk>
	<name>Dec 14, 2014 4:32:04 PM</name>
	<trkseg>
		<trkpt lat="30.16398" lon="31.467701">
			<ele>76</ele>
			<time>2014-12-14T14:32:10.339Z</time>
		</trkpt>
		<trkpt lat="30.16394" lon="31.467333">
			<ele>73</ele>
			<time>2014-12-14T14:32:16.00Z</time>
		</trkpt>
		<trkpt lat="30.16408" lon="31.467218">
			<ele>74</ele>
			<time>2014-12-14T14:32:19.00Z</time>
		</trkpt>
		[...]
	</trkseg>
	<trkseg>
		[...]
	</trkseg>
	[...]
</trk>
<trk>
	[...]
</trk>
[...]
<gpx>
			

		

			The following Python program called gpx_to_csv.py uses expat, a stream-oriented XML parser library, to convert the above GPX file in CSV format.
			

import sys
import xml.parsers.expat

stack = []
def start_element(name, attrs):
stack.append(name)
if name == 'gpx' :
	print("lon,lat,time")
if name == 'trkpt' :
	print("{},{},".format(attrs['lon'], attrs['lat']), end="")

def end_element(name):
stack.pop()

def char_data(data):
if stack[-1] == "time" and stack[-2] == "trkpt" :
	print(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.ParseFile(sys.stdin.buffer)
			

		

			This Python program can be executed as follows.
			

python3 gpx_to_csv.py < example.gpx > example.csv
			

			The resulting CSV file is given next.
			

lon,lat,time
31.46032,30.037502,2015-02-09T08:10:16.00Z
31.460901,30.039026,2015-02-09T08:10:31.00Z
31.461981,30.039816,2015-02-09T08:10:57.00Z
31.461996,30.039801,2015-02-09T08:10:58.00Z
...
			

			The above CSV file can be loaded into MobilityDB as follows. If the command COPY throws a permission error, you can instead use the \copy command of psql to import the CSV file.
			

DROP TABLE IF EXISTS trips_input;
CREATE TABLE trips_input (
	date date,
	lon float,
	lat float,
	time timestamptz
);

COPY trips_input(lon, lat, time) FROM
'/home/gpx_data/example.csv' DELIMITER ',' CSV HEADER;

UPDATE trips_input
SET date = date(time);

DROP TABLE IF EXISTS trips_mdb;
CREATE TABLE trips_mdb (
	date date NOT NULL,
	trip tgeompoint,
	trajectory geometry,
	PRIMARY KEY (date)
);

INSERT INTO trips_mdb(date, trip)
SELECT date, tgeompointSeq(array_agg(tgeompoint(
 ST_SetSRID(ST_Point(lon, lat), 4326), time) ORDER BY time))
FROM trips_input
GROUP BY date;

UPDATE trips_mdb
SET trajectory = trajectory(trip);
			

		

OEBPS/images/CreatingUserDefinedListOfCustomVariables.png

OEBPS/images/GrafanaTimerangePanelOpen.png

OEBPS/images/AssigningTimeRangeUsingGlobalVariables.png

OEBPS/images/DashboardSettingsGearBox.png

OEBPS/images/SingleAirframeRow1.png

OEBPS/images/SingleAirframeCallsignVsTime.png

OEBPS/images/SingleAirframeVelocityVsTime.png

OEBPS/images/FlightDashboard_final_visualization.png

OEBPS/images/LocationHistory.png

OEBPS/images/trajs.png

OEBPS/images/points.png

OEBPS/images/trajsWrongAzimuth.png

OEBPS/images/MultipleResultsForTheSameShipAtVariousTimesWhileInAPort.png

OEBPS/images/SingleAirframeAltitudeVsTime.png

OEBPS/images/DataSourceSettings.png

OEBPS/images/ChoosingVisualizationType.png

OEBPS/images/FrequencyIntersectingWithGeometricEnvelopVisualization.png

OEBPS/images/VisualizationOfGeometryIntersectionUsingDynamicVariables.png

OEBPS/images/MultipleQueriesSingleVisualization.png

OEBPS/images/stib.png

OEBPS/images/StandardOptionsDialogueBox.png

OEBPS/images/FinalVisualizationWithMultipleFlightAscents.png

OEBPS/images/trajsWrongSpeed.png

OEBPS/images/SettingUpHeatMapInDataLayerDialogueBox.png

OEBPS/images/approach1.png

OEBPS/images/StatStylesDialogueBox.png

OEBPS/images/trajsFiltered.png

OEBPS/images/VisualizationOfShipsWithin300mUsingHeatMap.png

OEBPS/images/approach2.png

OEBPS/images/DatatypeTransformationsInGrafana.png

OEBPS/images/IndividualShipSpeedStatisticsVisualization.png

OEBPS/images/FlightTrajSampleTable.png

OEBPS/images/trajFerries.png

OEBPS/images/SingleAirframeVertrateVsTime.png

OEBPS/images/AverageFlightSpeedVisualization.png

OEBPS/images/ZoomedInViewOfFlightAscent.png

OEBPS/images/ChoosingColorSchemeInStandardOptionsDialogueBox.png

OEBPS/images/ValueOptionsDialogueBox.png

OEBPS/images/trajApproach.png

OEBPS/images/SelectingVariablesInDashboardSettings.png

OEBPS/images/OverrideOptionsMultipleQueries.png

OEBPS/images/SettingInitialViewInMapViewDialogueBox.png

OEBPS/images/MultipleLayersInDataLayersDialogueBox.png

OEBPS/images/FullDashboard.png

OEBPS/images/ThresholdsDialogueBox.png

OEBPS/images/SingleAirframeTrajTable.png

OEBPS/images/mobilitydb-logo.png

OEBPS/images/SingleAirframeGeopointsVsTime.png

OEBPS/images/trajFerry.png

OEBPS/images/RouteUsageFrequencyHeatMapVisualization.png

OEBPS/images/StatisticVisualizationByFlightType.png

