MobilityDB 1.3
Loading...
Searching...
No Matches
simplehash.h
Go to the documentation of this file.
1/*
2 * simplehash.h
3 *
4 * When included this file generates a "templated" (by way of macros)
5 * open-addressing hash table implementation specialized to user-defined
6 * types.
7 *
8 * It's probably not worthwhile to generate such a specialized implementation
9 * for hash tables that aren't performance or space sensitive.
10 *
11 * Compared to dynahash, simplehash has the following benefits:
12 *
13 * - Due to the "templated" code generation has known structure sizes and no
14 * indirect function calls (which show up substantially in dynahash
15 * profiles). These features considerably increase speed for small
16 * entries.
17 * - Open addressing has better CPU cache behavior than dynahash's chained
18 * hashtables.
19 * - The generated interface is type-safe and easier to use than dynahash,
20 * though at the cost of more complex setup.
21 * - Allocates memory in a MemoryContext or another allocator with a
22 * malloc/free style interface (which isn't easily usable in a shared
23 * memory context)
24 * - Does not require the overhead of a separate memory context.
25 *
26 * Usage notes:
27 *
28 * To generate a hash-table and associated functions for a use case several
29 * macros have to be #define'ed before this file is included. Including
30 * the file #undef's all those, so a new hash table can be generated
31 * afterwards.
32 * The relevant parameters are:
33 * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
34 * will result in hash table type 'foo_hash' and functions like
35 * 'foo_insert'/'foo_lookup' and so forth.
36 * - SH_ELEMENT_TYPE - type of the contained elements
37 * - SH_KEY_TYPE - type of the hashtable's key
38 * - SH_DECLARE - if defined function prototypes and type declarations are
39 * generated
40 * - SH_DEFINE - if defined function definitions are generated
41 * - SH_SCOPE - in which scope (e.g. extern, static inline) do function
42 * declarations reside
43 * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
44 * use this to allocate bytes. The allocator must zero the returned space.
45 * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
46 * are defined, so you can supply your own
47 * The following parameters are only relevant when SH_DEFINE is defined:
48 * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
49 * - SH_EQUAL(table, a, b) - compare two table keys
50 * - SH_HASH_KEY(table, key) - generate hash for the key
51 * - SH_STORE_HASH - if defined the hash is stored in the elements
52 * - SH_GET_HASH(tb, a) - return the field to store the hash in
53 *
54 * The element type is required to contain a "status" member that can store
55 * the range of values defined in the SH_STATUS enum.
56 *
57 * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
58 * the hash table implementation needs to compare hashes to move elements
59 * (particularly when growing the hash), it's preferable, if possible, to
60 * store the element's hash in the element's data type. If the hash is so
61 * stored, the hash table will also compare hashes before calling SH_EQUAL
62 * when comparing two keys.
63 *
64 * For convenience the hash table create functions accept a void pointer
65 * that will be stored in the hash table type's member private_data. This
66 * allows callbacks to reference caller provided data.
67 *
68 * For examples of usage look at tidbitmap.c (file local definition) and
69 * execnodes.h/execGrouping.c (exposed declaration, file local
70 * implementation).
71 *
72 * Hash table design:
73 *
74 * The hash table design chosen is a variant of linear open-addressing. The
75 * reason for doing so is that linear addressing is CPU cache & pipeline
76 * friendly. The biggest disadvantage of simple linear addressing schemes
77 * are highly variable lookup times due to clustering, and deletions
78 * leaving a lot of tombstones around. To address these issues a variant
79 * of "robin hood" hashing is employed. Robin hood hashing optimizes
80 * chaining lengths by moving elements close to their optimal bucket
81 * ("rich" elements), out of the way if a to-be-inserted element is further
82 * away from its optimal position (i.e. it's "poor"). While that can make
83 * insertions slower, the average lookup performance is a lot better, and
84 * higher fill factors can be used in a still performant manner. To avoid
85 * tombstones - which normally solve the issue that a deleted node's
86 * presence is relevant to determine whether a lookup needs to continue
87 * looking or is done - buckets following a deleted element are shifted
88 * backwards, unless they're empty or already at their optimal position.
89 *
90 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
91 * Portions Copyright (c) 1994, Regents of the University of California
92 *
93 * src/include/lib/simplehash.h
94 */
95
96#include "port/pg_bitutils.h"
97
98/* helpers */
99#define SH_MAKE_PREFIX(a) CppConcat(a,_)
100#define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
101#define SH_MAKE_NAME_(a,b) CppConcat(a,b)
102
103/* name macros for: */
104
105/* type declarations */
106#define SH_TYPE SH_MAKE_NAME(hash)
107#define SH_STATUS SH_MAKE_NAME(status)
108#define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
109#define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
110#define SH_ITERATOR SH_MAKE_NAME(iterator)
111
112/* function declarations */
113#define SH_CREATE SH_MAKE_NAME(create)
114#define SH_DESTROY SH_MAKE_NAME(destroy)
115#define SH_RESET SH_MAKE_NAME(reset)
116#define SH_INSERT SH_MAKE_NAME(insert)
117#define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
118#define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
119#define SH_DELETE SH_MAKE_NAME(delete)
120#define SH_LOOKUP SH_MAKE_NAME(lookup)
121#define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
122#define SH_GROW SH_MAKE_NAME(grow)
123#define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
124#define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
125#define SH_ITERATE SH_MAKE_NAME(iterate)
126#define SH_ALLOCATE SH_MAKE_NAME(allocate)
127#define SH_FREE SH_MAKE_NAME(free)
128#define SH_STAT SH_MAKE_NAME(stat)
129
130/* internal helper functions (no externally visible prototypes) */
131#define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters)
132#define SH_NEXT SH_MAKE_NAME(next)
133#define SH_PREV SH_MAKE_NAME(prev)
134#define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
135#define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
136#define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
137#define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
138#define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
139
140/* generate forward declarations necessary to use the hash table */
141#ifdef SH_DECLARE
142
143/* type definitions */
144typedef struct SH_TYPE
145{
146 /*
147 * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
148 * tables. Note that the maximum number of elements is lower
149 * (SH_MAX_FILLFACTOR)
150 */
151 uint64 size;
152
153 /* how many elements have valid contents */
154 uint32 members;
155
156 /* mask for bucket and size calculations, based on size */
157 uint32 sizemask;
158
159 /* boundary after which to grow hashtable */
160 uint32 grow_threshold;
161
162 /* hash buckets */
163 SH_ELEMENT_TYPE *data;
164
165#ifndef SH_RAW_ALLOCATOR
166 /* memory context to use for allocations */
167 MemoryContext ctx;
168#endif
169
170 /* user defined data, useful for callbacks */
171 void *private_data;
172} SH_TYPE;
173
174typedef enum SH_STATUS
175{
176 SH_STATUS_EMPTY = 0x00,
177 SH_STATUS_IN_USE = 0x01
178} SH_STATUS;
179
180typedef struct SH_ITERATOR
181{
182 uint32 cur; /* current element */
183 uint32 end;
184 bool done; /* iterator exhausted? */
186
187/* externally visible function prototypes */
188#ifdef SH_RAW_ALLOCATOR
189/* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
190SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data);
191#else
192/*
193 * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
194 * void *private_data)
195 */
196SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements,
197 void *private_data);
198#endif
199
200/* void <prefix>_destroy(<prefix>_hash *tb) */
201SH_SCOPE void SH_DESTROY(SH_TYPE * tb);
202
203/* void <prefix>_reset(<prefix>_hash *tb) */
204SH_SCOPE void SH_RESET(SH_TYPE * tb);
205
206/* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
207SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize);
208
209/* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
210SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found);
211
212/*
213 * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
214 * bool *found)
215 */
217 uint32 hash, bool *found);
218
219/* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
221
222/* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
224 uint32 hash);
225
226/* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
228
229/* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
230SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key);
231
232/* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
234
235/*
236 * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
237 * uint32 at)
238 */
240
241/* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
243
244/* void <prefix>_stat(<prefix>_hash *tb */
245SH_SCOPE void SH_STAT(SH_TYPE * tb);
246
247#endif /* SH_DECLARE */
248
249
250/* generate implementation of the hash table */
251#ifdef SH_DEFINE
252
253#ifndef SH_RAW_ALLOCATOR
254#include "utils/memutils.h"
255#endif
256
257/* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
258#define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
259
260/* normal fillfactor, unless already close to maximum */
261#ifndef SH_FILLFACTOR
262#define SH_FILLFACTOR (0.9)
263#endif
264/* increase fillfactor if we otherwise would error out */
265#define SH_MAX_FILLFACTOR (0.98)
266/* grow if actual and optimal location bigger than */
267#ifndef SH_GROW_MAX_DIB
268#define SH_GROW_MAX_DIB 25
269#endif
270/* grow if more than elements to move when inserting */
271#ifndef SH_GROW_MAX_MOVE
272#define SH_GROW_MAX_MOVE 150
273#endif
274#ifndef SH_GROW_MIN_FILLFACTOR
275/* but do not grow due to SH_GROW_MAX_* if below */
276#define SH_GROW_MIN_FILLFACTOR 0.1
277#endif
278
279#ifdef SH_STORE_HASH
280#define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
281#else
282#define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
283#endif
284
285/*
286 * Wrap the following definitions in include guards, to avoid multiple
287 * definition errors if this header is included more than once. The rest of
288 * the file deliberately has no include guards, because it can be included
289 * with different parameters to define functions and types with non-colliding
290 * names.
291 */
292#ifndef SIMPLEHASH_H
293#define SIMPLEHASH_H
294
295#ifdef FRONTEND
296#define sh_error(...) pg_fatal(__VA_ARGS__)
297#define sh_log(...) pg_log_info(__VA_ARGS__)
298#else
299// #define sh_error(...) elog(ERROR, __VA_ARGS__)
300#define sh_error(...) meos_error(ERROR, MEOS_ERR_INTERNAL_ERROR, __VA_ARGS__)
301// /* MEOS */
302// #define sh_log(...) elog(LOG, __VA_ARGS__)
303#endif
304
305#endif
306
307/*
308 * Compute sizing parameters for hashtable. Called when creating and growing
309 * the hashtable.
310 */
311static inline void
313{
314 uint64 size;
315
316 /* supporting zero sized hashes would complicate matters */
317 size = Max(newsize, 2);
318
319 /* round up size to the next power of 2, that's how bucketing works */
320 size = pg_nextpower2_64(size);
321 Assert(size <= SH_MAX_SIZE);
322
323 /*
324 * Verify that allocation of ->data is possible on this platform, without
325 * overflowing Size.
326 */
327 if (unlikely((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2))
328 sh_error("hash table too large");
329
330 /* now set size */
331 tb->size = size;
332 tb->sizemask = (uint32) (size - 1);
333
334 /*
335 * Compute the next threshold at which we need to grow the hash table
336 * again.
337 */
338 if (tb->size == SH_MAX_SIZE)
339 tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR;
340 else
341 tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR;
342}
343
344/* return the optimal bucket for the hash */
345static inline uint32
347{
348 return hash & tb->sizemask;
349}
350
351/* return next bucket after the current, handling wraparound */
352static inline uint32
353SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem)
354{
355 curelem = (curelem + 1) & tb->sizemask;
356
357 Assert(curelem != startelem);
358
359 return curelem;
360}
361
362/* return bucket before the current, handling wraparound */
363static inline uint32
364SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem)
365{
366 curelem = (curelem - 1) & tb->sizemask;
367
368 Assert(curelem != startelem);
369
370 return curelem;
371}
372
373/* return distance between bucket and its optimal position */
374static inline uint32
375SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket)
376{
377 if (optimal <= bucket)
378 return bucket - optimal;
379 else
380 return (tb->size + bucket) - optimal;
381}
382
383static inline uint32
385{
386#ifdef SH_STORE_HASH
387 return SH_GET_HASH(tb, entry);
388#else
389 return SH_HASH_KEY(tb, entry->SH_KEY);
390#endif
391}
392
393/* default memory allocator function */
394static inline void *SH_ALLOCATE(SH_TYPE * type, Size size);
395static inline void SH_FREE(SH_TYPE * type, void *pointer);
396
397#ifndef SH_USE_NONDEFAULT_ALLOCATOR
398
399/* default memory allocator function */
400static inline void *
401SH_ALLOCATE(SH_TYPE * type, Size size)
402{
403#ifdef SH_RAW_ALLOCATOR
404 return SH_RAW_ALLOCATOR(size);
405#else
406 return MemoryContextAllocExtended(type->ctx, size,
407 MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO);
408#endif
409}
410
411/* default memory free function */
412static inline void
413SH_FREE(SH_TYPE * type, void *pointer)
414{
415 pfree(pointer);
416}
417
418#endif
419
420/*
421 * Create a hash table with enough space for `nelements` distinct members.
422 * Memory for the hash table is allocated from the passed-in context. If
423 * desired, the array of elements can be allocated using a passed-in allocator;
424 * this could be useful in order to place the array of elements in a shared
425 * memory, or in a context that will outlive the rest of the hash table.
426 * Memory other than for the array of elements will still be allocated from
427 * the passed-in context.
428 */
429#ifdef SH_RAW_ALLOCATOR
431SH_CREATE(uint32 nelements, void *private_data)
432#else
434SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data)
435#endif
436{
437 SH_TYPE *tb;
438 uint64 size;
439
440#ifdef SH_RAW_ALLOCATOR
441 tb = (SH_TYPE *) SH_RAW_ALLOCATOR(sizeof(SH_TYPE));
442#else
443 tb = (SH_TYPE *) MemoryContextAllocZero(ctx, sizeof(SH_TYPE));
444 tb->ctx = ctx;
445#endif
446 tb->private_data = private_data;
447
448 /* increase nelements by fillfactor, want to store nelements elements */
449 size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR);
450
451 SH_COMPUTE_PARAMETERS(tb, size);
452
453 tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
454
455 return tb;
456}
457
458/* destroy a previously created hash table */
459SH_SCOPE void
461{
462 SH_FREE(tb, tb->data);
463 pfree(tb);
464}
465
466/* reset the contents of a previously created hash table */
467SH_SCOPE void
468SH_RESET(SH_TYPE * tb)
469{
470 memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size);
471 tb->members = 0;
472}
473
474/*
475 * Grow a hash table to at least `newsize` buckets.
476 *
477 * Usually this will automatically be called by insertions/deletions, when
478 * necessary. But resizing to the exact input size can be advantageous
479 * performance-wise, when known at some point.
480 */
481SH_SCOPE void
482SH_GROW(SH_TYPE * tb, uint64 newsize)
483{
484 uint64 oldsize = tb->size;
485 SH_ELEMENT_TYPE *olddata = tb->data;
486 SH_ELEMENT_TYPE *newdata;
487 uint32 i;
488 uint32 startelem = 0;
489 uint32 copyelem;
490
491 Assert(oldsize == pg_nextpower2_64(oldsize));
492 Assert(oldsize != SH_MAX_SIZE);
493 Assert(oldsize < newsize);
494
495 /* compute parameters for new table */
496 SH_COMPUTE_PARAMETERS(tb, newsize);
497
498 tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
499
500 newdata = tb->data;
501
502 /*
503 * Copy entries from the old data to newdata. We theoretically could use
504 * SH_INSERT here, to avoid code duplication, but that's more general than
505 * we need. We neither want tb->members increased, nor do we need to do
506 * deal with deleted elements, nor do we need to compare keys. So a
507 * special-cased implementation is lot faster. As resizing can be time
508 * consuming and frequent, that's worthwhile to optimize.
509 *
510 * To be able to simply move entries over, we have to start not at the
511 * first bucket (i.e olddata[0]), but find the first bucket that's either
512 * empty, or is occupied by an entry at its optimal position. Such a
513 * bucket has to exist in any table with a load factor under 1, as not all
514 * buckets are occupied, i.e. there always has to be an empty bucket. By
515 * starting at such a bucket we can move the entries to the larger table,
516 * without having to deal with conflicts.
517 */
518
519 /* search for the first element in the hash that's not wrapped around */
520 for (i = 0; i < oldsize; i++)
521 {
522 SH_ELEMENT_TYPE *oldentry = &olddata[i];
523 uint32 hash;
524 uint32 optimal;
525
526 if (oldentry->status != SH_STATUS_IN_USE)
527 {
528 startelem = i;
529 break;
530 }
531
532 hash = SH_ENTRY_HASH(tb, oldentry);
533 optimal = SH_INITIAL_BUCKET(tb, hash);
534
535 if (optimal == i)
536 {
537 startelem = i;
538 break;
539 }
540 }
541
542 /* and copy all elements in the old table */
543 copyelem = startelem;
544 for (i = 0; i < oldsize; i++)
545 {
546 SH_ELEMENT_TYPE *oldentry = &olddata[copyelem];
547
548 if (oldentry->status == SH_STATUS_IN_USE)
549 {
550 uint32 hash;
551 uint32 startelem2;
552 uint32 curelem;
553 SH_ELEMENT_TYPE *newentry;
554
555 hash = SH_ENTRY_HASH(tb, oldentry);
556 startelem2 = SH_INITIAL_BUCKET(tb, hash);
557 curelem = startelem2;
558
559 /* find empty element to put data into */
560 while (true)
561 {
562 newentry = &newdata[curelem];
563
564 if (newentry->status == SH_STATUS_EMPTY)
565 {
566 break;
567 }
568
569 curelem = SH_NEXT(tb, curelem, startelem2);
570 }
571
572 /* copy entry to new slot */
573 memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE));
574 }
575
576 /* can't use SH_NEXT here, would use new size */
577 copyelem++;
578 if (copyelem >= oldsize)
579 {
580 copyelem = 0;
581 }
582 }
583
584 SH_FREE(tb, olddata);
585}
586
587/*
588 * This is a separate static inline function, so it can be reliably be inlined
589 * into its wrapper functions even if SH_SCOPE is extern.
590 */
591static inline SH_ELEMENT_TYPE *
592SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
593{
594 uint32 startelem;
595 uint32 curelem;
596 SH_ELEMENT_TYPE *data;
597 uint32 insertdist;
598
599restart:
600 insertdist = 0;
601
602 /*
603 * We do the grow check even if the key is actually present, to avoid
604 * doing the check inside the loop. This also lets us avoid having to
605 * re-find our position in the hashtable after resizing.
606 *
607 * Note that this also reached when resizing the table due to
608 * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
609 */
610 if (unlikely(tb->members >= tb->grow_threshold))
611 {
612 if (unlikely(tb->size == SH_MAX_SIZE))
613 sh_error("hash table size exceeded");
614
615 /*
616 * When optimizing, it can be very useful to print these out.
617 */
618 /* SH_STAT(tb); */
619 SH_GROW(tb, tb->size * 2);
620 /* SH_STAT(tb); */
621 }
622
623 /* perform insert, start bucket search at optimal location */
624 data = tb->data;
625 startelem = SH_INITIAL_BUCKET(tb, hash);
626 curelem = startelem;
627 while (true)
628 {
629 uint32 curdist;
630 uint32 curhash;
631 uint32 curoptimal;
632 SH_ELEMENT_TYPE *entry = &data[curelem];
633
634 /* any empty bucket can directly be used */
635 if (entry->status == SH_STATUS_EMPTY)
636 {
637 tb->members++;
638 entry->SH_KEY = key;
639#ifdef SH_STORE_HASH
640 SH_GET_HASH(tb, entry) = hash;
641#endif
642 entry->status = SH_STATUS_IN_USE;
643 *found = false;
644 return entry;
645 }
646
647 /*
648 * If the bucket is not empty, we either found a match (in which case
649 * we're done), or we have to decide whether to skip over or move the
650 * colliding entry. When the colliding element's distance to its
651 * optimal position is smaller than the to-be-inserted entry's, we
652 * shift the colliding entry (and its followers) forward by one.
653 */
654
655 if (SH_COMPARE_KEYS(tb, hash, key, entry))
656 {
657 Assert(entry->status == SH_STATUS_IN_USE);
658 *found = true;
659 return entry;
660 }
661
662 curhash = SH_ENTRY_HASH(tb, entry);
663 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
664 curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem);
665
666 if (insertdist > curdist)
667 {
668 SH_ELEMENT_TYPE *lastentry = entry;
669 uint32 emptyelem = curelem;
670 uint32 moveelem;
671 int32 emptydist = 0;
672
673 /* find next empty bucket */
674 while (true)
675 {
676 SH_ELEMENT_TYPE *emptyentry;
677
678 emptyelem = SH_NEXT(tb, emptyelem, startelem);
679 emptyentry = &data[emptyelem];
680
681 if (emptyentry->status == SH_STATUS_EMPTY)
682 {
683 lastentry = emptyentry;
684 break;
685 }
686
687 /*
688 * To avoid negative consequences from overly imbalanced
689 * hashtables, grow the hashtable if collisions would require
690 * us to move a lot of entries. The most likely cause of such
691 * imbalance is filling a (currently) small table, from a
692 * currently big one, in hash-table order. Don't grow if the
693 * hashtable would be too empty, to prevent quick space
694 * explosion for some weird edge cases.
695 */
696 if (unlikely(++emptydist > SH_GROW_MAX_MOVE) &&
697 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
698 {
699 tb->grow_threshold = 0;
700 goto restart;
701 }
702 }
703
704 /* shift forward, starting at last occupied element */
705
706 /*
707 * TODO: This could be optimized to be one memcpy in many cases,
708 * excepting wrapping around at the end of ->data. Hasn't shown up
709 * in profiles so far though.
710 */
711 moveelem = emptyelem;
712 while (moveelem != curelem)
713 {
714 SH_ELEMENT_TYPE *moveentry;
715
716 moveelem = SH_PREV(tb, moveelem, startelem);
717 moveentry = &data[moveelem];
718
719 memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE));
720 lastentry = moveentry;
721 }
722
723 /* and fill the now empty spot */
724 tb->members++;
725
726 entry->SH_KEY = key;
727#ifdef SH_STORE_HASH
728 SH_GET_HASH(tb, entry) = hash;
729#endif
730 entry->status = SH_STATUS_IN_USE;
731 *found = false;
732 return entry;
733 }
734
735 curelem = SH_NEXT(tb, curelem, startelem);
736 insertdist++;
737
738 /*
739 * To avoid negative consequences from overly imbalanced hashtables,
740 * grow the hashtable if collisions lead to large runs. The most
741 * likely cause of such imbalance is filling a (currently) small
742 * table, from a currently big one, in hash-table order. Don't grow
743 * if the hashtable would be too empty, to prevent quick space
744 * explosion for some weird edge cases.
745 */
746 if (unlikely(insertdist > SH_GROW_MAX_DIB) &&
747 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
748 {
749 tb->grow_threshold = 0;
750 goto restart;
751 }
752 }
753}
754
755/*
756 * Insert the key key into the hash-table, set *found to true if the key
757 * already exists, false otherwise. Returns the hash-table entry in either
758 * case.
759 */
761SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found)
762{
763 uint32 hash = SH_HASH_KEY(tb, key);
764
765 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
766}
767
768/*
769 * Insert the key key into the hash-table using an already-calculated
770 * hash. Set *found to true if the key already exists, false
771 * otherwise. Returns the hash-table entry in either case.
772 */
774SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
775{
776 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
777}
778
779/*
780 * This is a separate static inline function, so it can be reliably be inlined
781 * into its wrapper functions even if SH_SCOPE is extern.
782 */
783static inline SH_ELEMENT_TYPE *
785{
786 const uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
787 uint32 curelem = startelem;
788
789 while (true)
790 {
791 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
792
793 if (entry->status == SH_STATUS_EMPTY)
794 {
795 return NULL;
796 }
797
798 Assert(entry->status == SH_STATUS_IN_USE);
799
800 if (SH_COMPARE_KEYS(tb, hash, key, entry))
801 return entry;
802
803 /*
804 * TODO: we could stop search based on distance. If the current
805 * buckets's distance-from-optimal is smaller than what we've skipped
806 * already, the entry doesn't exist. Probably only do so if
807 * SH_STORE_HASH is defined, to avoid re-computing hashes?
808 */
809
810 curelem = SH_NEXT(tb, curelem, startelem);
811 }
812}
813
814/*
815 * Lookup entry in hash table. Returns NULL if key not present.
816 */
819{
820 uint32 hash = SH_HASH_KEY(tb, key);
821
822 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
823}
824
825/*
826 * Lookup entry in hash table using an already-calculated hash.
827 *
828 * Returns NULL if key not present.
829 */
832{
833 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
834}
835
836/*
837 * Delete entry from hash table by key. Returns whether to-be-deleted key was
838 * present.
839 */
840SH_SCOPE bool
842{
843 uint32 hash = SH_HASH_KEY(tb, key);
844 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
845 uint32 curelem = startelem;
846
847 while (true)
848 {
849 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
850
851 if (entry->status == SH_STATUS_EMPTY)
852 return false;
853
854 if (entry->status == SH_STATUS_IN_USE &&
855 SH_COMPARE_KEYS(tb, hash, key, entry))
856 {
857 SH_ELEMENT_TYPE *lastentry = entry;
858
859 tb->members--;
860
861 /*
862 * Backward shift following elements till either an empty element
863 * or an element at its optimal position is encountered.
864 *
865 * While that sounds expensive, the average chain length is short,
866 * and deletions would otherwise require tombstones.
867 */
868 while (true)
869 {
870 SH_ELEMENT_TYPE *curentry;
871 uint32 curhash;
872 uint32 curoptimal;
873
874 curelem = SH_NEXT(tb, curelem, startelem);
875 curentry = &tb->data[curelem];
876
877 if (curentry->status != SH_STATUS_IN_USE)
878 {
879 lastentry->status = SH_STATUS_EMPTY;
880 break;
881 }
882
883 curhash = SH_ENTRY_HASH(tb, curentry);
884 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
885
886 /* current is at optimal position, done */
887 if (curoptimal == curelem)
888 {
889 lastentry->status = SH_STATUS_EMPTY;
890 break;
891 }
892
893 /* shift */
894 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
895
896 lastentry = curentry;
897 }
898
899 return true;
900 }
901
902 /* TODO: return false; if distance too big */
903
904 curelem = SH_NEXT(tb, curelem, startelem);
905 }
906}
907
908/*
909 * Delete entry from hash table by entry pointer
910 */
911SH_SCOPE void
913{
914 SH_ELEMENT_TYPE *lastentry = entry;
915 uint32 hash = SH_ENTRY_HASH(tb, entry);
916 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
917 uint32 curelem;
918
919 /* Calculate the index of 'entry' */
920 curelem = entry - &tb->data[0];
921
922 tb->members--;
923
924 /*
925 * Backward shift following elements till either an empty element or an
926 * element at its optimal position is encountered.
927 *
928 * While that sounds expensive, the average chain length is short, and
929 * deletions would otherwise require tombstones.
930 */
931 while (true)
932 {
933 SH_ELEMENT_TYPE *curentry;
934 uint32 curhash;
935 uint32 curoptimal;
936
937 curelem = SH_NEXT(tb, curelem, startelem);
938 curentry = &tb->data[curelem];
939
940 if (curentry->status != SH_STATUS_IN_USE)
941 {
942 lastentry->status = SH_STATUS_EMPTY;
943 break;
944 }
945
946 curhash = SH_ENTRY_HASH(tb, curentry);
947 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
948
949 /* current is at optimal position, done */
950 if (curoptimal == curelem)
951 {
952 lastentry->status = SH_STATUS_EMPTY;
953 break;
954 }
955
956 /* shift */
957 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
958
959 lastentry = curentry;
960 }
961}
962
963/*
964 * Initialize iterator.
965 */
966SH_SCOPE void
968{
969 int i;
970 uint64 startelem = PG_UINT64_MAX;
971
972 /*
973 * Search for the first empty element. As deletions during iterations are
974 * supported, we want to start/end at an element that cannot be affected
975 * by elements being shifted.
976 */
977 for (i = 0; i < tb->size; i++)
978 {
979 SH_ELEMENT_TYPE *entry = &tb->data[i];
980
981 if (entry->status != SH_STATUS_IN_USE)
982 {
983 startelem = i;
984 break;
985 }
986 }
987
988 Assert(startelem < SH_MAX_SIZE);
989
990 /*
991 * Iterate backwards, that allows the current element to be deleted, even
992 * if there are backward shifts
993 */
994 iter->cur = startelem;
995 iter->end = iter->cur;
996 iter->done = false;
997}
998
999/*
1000 * Initialize iterator to a specific bucket. That's really only useful for
1001 * cases where callers are partially iterating over the hashspace, and that
1002 * iteration deletes and inserts elements based on visited entries. Doing that
1003 * repeatedly could lead to an unbalanced keyspace when always starting at the
1004 * same position.
1005 */
1006SH_SCOPE void
1008{
1009 /*
1010 * Iterate backwards, that allows the current element to be deleted, even
1011 * if there are backward shifts.
1012 */
1013 iter->cur = at & tb->sizemask; /* ensure at is within a valid range */
1014 iter->end = iter->cur;
1015 iter->done = false;
1016}
1017
1018/*
1019 * Iterate over all entries in the hash-table. Return the next occupied entry,
1020 * or NULL if done.
1021 *
1022 * During iteration the current entry in the hash table may be deleted,
1023 * without leading to elements being skipped or returned twice. Additionally
1024 * the rest of the table may be modified (i.e. there can be insertions or
1025 * deletions), but if so, there's neither a guarantee that all nodes are
1026 * visited at least once, nor a guarantee that a node is visited at most once.
1027 */
1029SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
1030{
1031 while (!iter->done)
1032 {
1033 SH_ELEMENT_TYPE *elem;
1034
1035 elem = &tb->data[iter->cur];
1036
1037 /* next element in backward direction */
1038 iter->cur = (iter->cur - 1) & tb->sizemask;
1039
1040 if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask))
1041 iter->done = true;
1042 if (elem->status == SH_STATUS_IN_USE)
1043 {
1044 return elem;
1045 }
1046 }
1047
1048 return NULL;
1049}
1050
1051/*
1052 * Report some statistics about the state of the hashtable. For
1053 * debugging/profiling purposes only.
1054 */
1055SH_SCOPE void
1056SH_STAT(SH_TYPE * tb)
1057{
1058 uint32 max_chain_length = 0;
1059 uint32 total_chain_length = 0;
1060 double avg_chain_length;
1061 double fillfactor;
1062 uint32 i;
1063
1064 uint32 *collisions = (uint32 *) palloc0(tb->size * sizeof(uint32));
1065 uint32 total_collisions = 0;
1066 uint32 max_collisions = 0;
1067 double avg_collisions;
1068
1069 for (i = 0; i < tb->size; i++)
1070 {
1071 uint32 hash;
1072 uint32 optimal;
1073 uint32 dist;
1074 SH_ELEMENT_TYPE *elem;
1075
1076 elem = &tb->data[i];
1077
1078 if (elem->status != SH_STATUS_IN_USE)
1079 continue;
1080
1081 hash = SH_ENTRY_HASH(tb, elem);
1082 optimal = SH_INITIAL_BUCKET(tb, hash);
1083 dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i);
1084
1085 if (dist > max_chain_length)
1086 max_chain_length = dist;
1087 total_chain_length += dist;
1088
1089 collisions[optimal]++;
1090 }
1091
1092 for (i = 0; i < tb->size; i++)
1093 {
1094 uint32 curcoll = collisions[i];
1095
1096 if (curcoll == 0)
1097 continue;
1098
1099 /* single contained element is not a collision */
1100 curcoll--;
1101 total_collisions += curcoll;
1102 if (curcoll > max_collisions)
1103 max_collisions = curcoll;
1104 }
1105
1106 if (tb->members > 0)
1107 {
1108 fillfactor = tb->members / ((double) tb->size);
1109 avg_chain_length = ((double) total_chain_length) / tb->members;
1110 avg_collisions = ((double) total_collisions) / tb->members;
1111 }
1112 else
1113 {
1114 fillfactor = 0;
1115 avg_chain_length = 0;
1116 avg_collisions = 0;
1117 }
1118
1119// /* MEOS */
1120 // sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %u, avg_collisions: %f",
1121 // tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length,
1122 // total_collisions, max_collisions, avg_collisions);
1123}
1124
1125#endif /* SH_DEFINE */
1126
1127
1128/* undefine external parameters, so next hash table can be defined */
1129#undef SH_PREFIX
1130#undef SH_KEY_TYPE
1131#undef SH_KEY
1132#undef SH_ELEMENT_TYPE
1133#undef SH_HASH_KEY
1134#undef SH_SCOPE
1135#undef SH_DECLARE
1136#undef SH_DEFINE
1137#undef SH_GET_HASH
1138#undef SH_STORE_HASH
1139#undef SH_USE_NONDEFAULT_ALLOCATOR
1140#undef SH_EQUAL
1141
1142/* undefine locally declared macros */
1143#undef SH_MAKE_PREFIX
1144#undef SH_MAKE_NAME
1145#undef SH_MAKE_NAME_
1146#undef SH_FILLFACTOR
1147#undef SH_MAX_FILLFACTOR
1148#undef SH_GROW_MAX_DIB
1149#undef SH_GROW_MAX_MOVE
1150#undef SH_GROW_MIN_FILLFACTOR
1151#undef SH_MAX_SIZE
1152
1153/* types */
1154#undef SH_TYPE
1155#undef SH_STATUS
1156#undef SH_STATUS_EMPTY
1157#undef SH_STATUS_IN_USE
1158#undef SH_ITERATOR
1159
1160/* external function names */
1161#undef SH_CREATE
1162#undef SH_DESTROY
1163#undef SH_RESET
1164#undef SH_INSERT
1165#undef SH_INSERT_HASH
1166#undef SH_DELETE_ITEM
1167#undef SH_DELETE
1168#undef SH_LOOKUP
1169#undef SH_LOOKUP_HASH
1170#undef SH_GROW
1171#undef SH_START_ITERATE
1172#undef SH_START_ITERATE_AT
1173#undef SH_ITERATE
1174#undef SH_ALLOCATE
1175#undef SH_FREE
1176#undef SH_STAT
1177
1178/* internal function names */
1179#undef SH_COMPUTE_PARAMETERS
1180#undef SH_COMPARE_KEYS
1181#undef SH_INITIAL_BUCKET
1182#undef SH_NEXT
1183#undef SH_PREV
1184#undef SH_DISTANCE_FROM_OPTIMAL
1185#undef SH_ENTRY_HASH
1186#undef SH_INSERT_HASH_INTERNAL
1187#undef SH_LOOKUP_HASH_INTERNAL
#define Min(x, y)
Definition: c.h:1004
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:822
#define unlikely(x)
Definition: c.h:285
#define PG_UINT64_MAX
Definition: c.h:544
size_t Size
Definition: c.h:556
static uint64 pg_nextpower2_64(uint64 num)
Definition: pg_bitutils.h:169
#define SH_RAW_ALLOCATOR
Definition: pgtz.c:49
#define SH_HASH_KEY(tb, key)
Definition: pgtz.c:46
#define SH_ELEMENT_TYPE
Definition: pgtz.c:43
#define SH_KEY_TYPE
Definition: pgtz.c:44
#define SH_SCOPE
Definition: pgtz.c:48
#define palloc0(X)
Definition: postgres.h:65
#define pfree
Definition: postgres.h:68
unsigned int uint32
Definition: postgres_ext_defs.in.h:16
signed int int32
Definition: postgres_ext_defs.in.h:11
unsigned long int uint64
Definition: postgres_ext_defs.in.h:17
#define SH_GROW
Definition: simplehash.h:122
#define SH_STAT
Definition: simplehash.h:128
#define SH_INITIAL_BUCKET
Definition: simplehash.h:135
#define SH_INSERT_HASH
Definition: simplehash.h:117
#define SH_PREV
Definition: simplehash.h:133
#define SH_STATUS
Definition: simplehash.h:107
#define SH_CREATE
Definition: simplehash.h:113
#define SH_LOOKUP_HASH
Definition: simplehash.h:121
#define SH_START_ITERATE
Definition: simplehash.h:123
#define SH_COMPUTE_PARAMETERS
Definition: simplehash.h:131
#define SH_FREE
Definition: simplehash.h:127
#define SH_STATUS_IN_USE
Definition: simplehash.h:109
#define SH_DISTANCE_FROM_OPTIMAL
Definition: simplehash.h:134
#define SH_LOOKUP_HASH_INTERNAL
Definition: simplehash.h:138
#define SH_ITERATOR
Definition: simplehash.h:110
#define SH_NEXT
Definition: simplehash.h:132
#define SH_ITERATE
Definition: simplehash.h:125
#define SH_DELETE
Definition: simplehash.h:119
#define SH_INSERT
Definition: simplehash.h:116
#define SH_INSERT_HASH_INTERNAL
Definition: simplehash.h:137
#define SH_RESET
Definition: simplehash.h:115
#define SH_ENTRY_HASH
Definition: simplehash.h:136
#define SH_DELETE_ITEM
Definition: simplehash.h:118
#define SH_ALLOCATE
Definition: simplehash.h:126
#define SH_LOOKUP
Definition: simplehash.h:120
#define SH_TYPE
Definition: simplehash.h:106
#define SH_START_ITERATE_AT
Definition: simplehash.h:124
#define SH_STATUS_EMPTY
Definition: simplehash.h:108
#define SH_DESTROY
Definition: simplehash.h:114